Home
Class 12
MATHS
If |veca - vecb|=|veca| =|vecb|=1 , the...

If `|veca - vecb|=|veca| =|vecb|=1 ` , then the angle between ` veca and vecb` , is

A

`pi/3`

B

` ( 3pi)/4`

C

` pi/2`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the angle between the vectors \(\vec{a}\) and \(\vec{b}\) given the conditions \( |\vec{a} - \vec{b}| = |\vec{a}| = |\vec{b}| = 1 \). ### Step-by-Step Solution: 1. **Understand the Given Information:** We know that: \[ |\vec{a}| = 1, \quad |\vec{b}| = 1, \quad |\vec{a} - \vec{b}| = 1 \] 2. **Use the Magnitude Formula:** We can express the magnitude of the difference of two vectors: \[ |\vec{a} - \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 - 2 \vec{a} \cdot \vec{b} \] 3. **Substitute the Known Values:** Since \( |\vec{a}| = 1 \) and \( |\vec{b}| = 1 \), we have: \[ |\vec{a} - \vec{b}|^2 = 1^2 + 1^2 - 2 \vec{a} \cdot \vec{b} \] This simplifies to: \[ |\vec{a} - \vec{b}|^2 = 1 + 1 - 2 \vec{a} \cdot \vec{b} \] Therefore: \[ |\vec{a} - \vec{b}|^2 = 2 - 2 \vec{a} \cdot \vec{b} \] 4. **Set the Equation:** Since \( |\vec{a} - \vec{b}| = 1 \), we square both sides: \[ 1^2 = 2 - 2 \vec{a} \cdot \vec{b} \] This gives us: \[ 1 = 2 - 2 \vec{a} \cdot \vec{b} \] 5. **Rearrange the Equation:** Rearranging the equation leads to: \[ 2 \vec{a} \cdot \vec{b} = 2 - 1 \] Thus: \[ 2 \vec{a} \cdot \vec{b} = 1 \] Therefore: \[ \vec{a} \cdot \vec{b} = \frac{1}{2} \] 6. **Relate the Dot Product to the Angle:** The dot product can also be expressed in terms of the angle \(\theta\) between the vectors: \[ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta \] Substituting the magnitudes: \[ \vec{a} \cdot \vec{b} = 1 \cdot 1 \cdot \cos \theta = \cos \theta \] Therefore, we have: \[ \cos \theta = \frac{1}{2} \] 7. **Find the Angle:** The angle \(\theta\) that satisfies \(\cos \theta = \frac{1}{2}\) is: \[ \theta = \frac{\pi}{3} \text{ radians} \quad \text{(or } 60^\circ\text{)} \] ### Final Answer: The angle between \(\vec{a}\) and \(\vec{b}\) is \(\frac{\pi}{3}\) radians. ---

To solve the problem, we need to find the angle between the vectors \(\vec{a}\) and \(\vec{b}\) given the conditions \( |\vec{a} - \vec{b}| = |\vec{a}| = |\vec{b}| = 1 \). ### Step-by-Step Solution: 1. **Understand the Given Information:** We know that: \[ |\vec{a}| = 1, \quad |\vec{b}| = 1, \quad |\vec{a} - \vec{b}| = 1 ...
Promotional Banner

Topper's Solved these Questions

  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos

Similar Questions

Explore conceptually related problems

If veca * vecb = |veca xx vecb| , then this angle between veca and vecb is,

If | veca + vecb|=| veca - vecb| , then what is the angle between veca and vecb ?

If |veca xx vecb| = ab then the angle between veca and vecb is

If |veca+vecb|=|veca-vecb| , then what is the angle between veca " and "vecb ?

If veca,vecb are two unit vectors such that |veca + vecb| = 2sqrt3 and |veca -vecb|=6 then the angle between veca and vecb , is

If |veca+ vecb| lt | veca- vecb| , then the angle between veca and vecb can lie in the interval

If veca . vecb =ab then the angle between veca and vecb is

If veca +vecb +vecc =vec0, |veca| =3 , |vecb|=5 and |vecc| =7 , then the angle between veca and vecb is

If |vecA + vecB| = |vecA - vecB| , then the angle between vecA and vecB will be

If |vecA + vecB| = |vecA - vecB| , then the angle between vecA and vecB will be