Home
Class 12
MATHS
Let veca and vecb are two vectors incli...

Let ` veca and vecb` are two vectors inclined at an angle of ` 60^(@) , If |veca|=|vecb|=2` ,the the angle between ` veca and veca + vecb` is

A

` 30^(@)`

B

`60^(@)`

C

`45^(@)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the angle between the vector \( \vec{a} \) and the vector \( \vec{a} + \vec{b} \) given that the magnitudes of both vectors are 2 and they are inclined at an angle of \( 60^\circ \). ### Step 1: Calculate \( \vec{a} \cdot \vec{b} \) Given: - \( |\vec{a}| = 2 \) - \( |\vec{b}| = 2 \) - \( \theta = 60^\circ \) The dot product of two vectors can be calculated as: \[ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos(\theta) \] Substituting the values: \[ \vec{a} \cdot \vec{b} = 2 \cdot 2 \cdot \cos(60^\circ) = 4 \cdot \frac{1}{2} = 2 \] ### Step 2: Calculate the magnitude of \( \vec{a} + \vec{b} \) The magnitude of the sum of two vectors can be calculated using the formula: \[ |\vec{a} + \vec{b}| = \sqrt{|\vec{a}|^2 + |\vec{b}|^2 + 2 \vec{a} \cdot \vec{b}} \] Substituting the known values: \[ |\vec{a} + \vec{b}| = \sqrt{2^2 + 2^2 + 2 \cdot 2} = \sqrt{4 + 4 + 4} = \sqrt{12} = 2\sqrt{3} \] ### Step 3: Find the angle \( \phi \) between \( \vec{a} \) and \( \vec{a} + \vec{b} \) The cosine of the angle \( \phi \) between \( \vec{a} \) and \( \vec{a} + \vec{b} \) can be calculated using the formula: \[ \cos(\phi) = \frac{\vec{a} \cdot (\vec{a} + \vec{b})}{|\vec{a}| |\vec{a} + \vec{b}|} \] First, calculate \( \vec{a} \cdot (\vec{a} + \vec{b}) \): \[ \vec{a} \cdot (\vec{a} + \vec{b}) = \vec{a} \cdot \vec{a} + \vec{a} \cdot \vec{b} = |\vec{a}|^2 + \vec{a} \cdot \vec{b} = 2^2 + 2 = 4 + 2 = 6 \] Now substituting into the cosine formula: \[ \cos(\phi) = \frac{6}{2 \cdot 2\sqrt{3}} = \frac{6}{4\sqrt{3}} = \frac{3}{2\sqrt{3}} = \frac{\sqrt{3}}{2} \] ### Step 4: Determine the angle \( \phi \) From the cosine value: \[ \cos(\phi) = \frac{\sqrt{3}}{2} \] This corresponds to: \[ \phi = 30^\circ \] ### Final Answer The angle between \( \vec{a} \) and \( \vec{a} + \vec{b} \) is \( 30^\circ \). ---

To solve the problem step by step, we need to find the angle between the vector \( \vec{a} \) and the vector \( \vec{a} + \vec{b} \) given that the magnitudes of both vectors are 2 and they are inclined at an angle of \( 60^\circ \). ### Step 1: Calculate \( \vec{a} \cdot \vec{b} \) Given: - \( |\vec{a}| = 2 \) - \( |\vec{b}| = 2 \) - \( \theta = 60^\circ \) ...
Promotional Banner

Topper's Solved these Questions

  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos

Similar Questions

Explore conceptually related problems

If veca . vecb =ab then the angle between veca and vecb is

Let veca and vecb are unit vectors inclined at an angle alpha to each other , if |veca+vecb| lt 1 then

If |veca - vecb|=|veca| =|vecb|=1 , then the angle between veca and vecb , is

If veca and vecb are unit vectors inclined at an angle theta , then the value of |veca-vecb| is

If veca * vecb = |veca xx vecb| , then this angle between veca and vecb is,

If |vecA xx vecB| = vecA.vecB then the angle between vecA and vecB is :

vectors veca and vecb are inclined at an angle theta = 60^(@). " If " |veca|=1, |vecb| =2 , " then " [ (veca + 3vecb) xx ( 3 veca -vecb)] ^(2) is equal to

If |veca+vecb|=|veca-vecb| , then what is the angle between veca " and "vecb ?

If |vecA+vecB|=|vecA|+|vecB| , then angle between vecA and vecB will be

If veca,vecb are two unit vectors such that |veca + vecb| = 2sqrt3 and |veca -vecb|=6 then the angle between veca and vecb , is