Home
Class 12
MATHS
If veca , vecb are unit vectors such th...

If ` veca , vecb` are unit vectors such that ` |vec a+vecb|=-1 " then " |2veca -3vecb| =`

A

19

B

`sqrt19`

C

`sqrt13`

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the magnitude of \( |2\vec{a} - 3\vec{b}| \) given that \( |\vec{a} + \vec{b}| = 1 \) and both \( \vec{a} \) and \( \vec{b} \) are unit vectors. ### Step-by-step Solution: 1. **Square the Magnitude Equation**: \[ |\vec{a} + \vec{b}|^2 = 1^2 \] This gives us: \[ |\vec{a}|^2 + |\vec{b}|^2 + 2\vec{a} \cdot \vec{b} = 1 \] 2. **Use the fact that \( \vec{a} \) and \( \vec{b} \) are unit vectors**: Since \( |\vec{a}| = 1 \) and \( |\vec{b}| = 1 \), we have: \[ 1^2 + 1^2 + 2\vec{a} \cdot \vec{b} = 1 \] Simplifying this gives: \[ 1 + 1 + 2\vec{a} \cdot \vec{b} = 1 \] \[ 2 + 2\vec{a} \cdot \vec{b} = 1 \] 3. **Solve for \( \vec{a} \cdot \vec{b} \)**: Rearranging gives: \[ 2\vec{a} \cdot \vec{b} = 1 - 2 \] \[ 2\vec{a} \cdot \vec{b} = -1 \] \[ \vec{a} \cdot \vec{b} = -\frac{1}{2} \] 4. **Find the magnitude of \( |2\vec{a} - 3\vec{b}| \)**: We start by squaring the magnitude: \[ |2\vec{a} - 3\vec{b}|^2 = (2\vec{a} - 3\vec{b}) \cdot (2\vec{a} - 3\vec{b}) \] Expanding this gives: \[ = 4|\vec{a}|^2 + 9|\vec{b}|^2 - 2(2\vec{a} \cdot 3\vec{b}) \] Substituting the values: \[ = 4(1) + 9(1) - 2(6\vec{a} \cdot \vec{b}) \] \[ = 4 + 9 - 12(\vec{a} \cdot \vec{b}) \] We already found \( \vec{a} \cdot \vec{b} = -\frac{1}{2} \): \[ = 4 + 9 - 12\left(-\frac{1}{2}\right) \] \[ = 4 + 9 + 6 \] \[ = 19 \] 5. **Take the square root to find the magnitude**: \[ |2\vec{a} - 3\vec{b}| = \sqrt{19} \] ### Final Answer: \[ |2\vec{a} - 3\vec{b}| = \sqrt{19} \]

To solve the problem, we need to find the magnitude of \( |2\vec{a} - 3\vec{b}| \) given that \( |\vec{a} + \vec{b}| = 1 \) and both \( \vec{a} \) and \( \vec{b} \) are unit vectors. ### Step-by-step Solution: 1. **Square the Magnitude Equation**: \[ |\vec{a} + \vec{b}|^2 = 1^2 \] ...
Promotional Banner

Topper's Solved these Questions

  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb are unit vectors such that |veca +vecb|=1 and |veca -vecb|=sqrt3 , then |3 veca+2vecb |=

If veca,vecb are two unit vectors such that |veca + vecb| = 2sqrt3 and |veca -vecb|=6 then the angle between veca and vecb , is

If veca and vecb are non - zero vectors such that |veca + vecb| = |veca - 2vecb| then

If veca and vecb are unit vectors such that (veca +vecb). (2veca + 3vecb)xx(3veca - 2vecb)=vec0 then angle between veca and vecb is

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

If two out to the three vectors , veca, vecb , vecc are unit vectors such that veca + vecb + vecc =0 and 2(veca.vecb + vecb .vecc + vecc.veca) +3=0 then the length of the third vector is

If veca , vecb , vecc are unit vectors such that veca+ vecb+ vecc= vec0 find the value of (veca* vecb+ vecb* vecc+ vecc*veca) .

If veca,vecb and vecc are unit vectors such that veca + vecb + vecc= 0 , then prove that veca.vecb+vecb.vecc+vecc.veca=-3/2

If veca , vec b all are unit vector, then the greatest value of |veca +vecb| + |veca-vecb| is

Let veca and vecb are unit vectors such that |veca+vecb|=(3)/(2) , then the value of (2veca+7vecb).(4veca+3vecb+2020vecaxxvecb) is equal to