Home
Class 12
MATHS
If veca, vecb are unit vectors such tha...

If ` veca, vecb` are unit vectors such that ` |veca +vecb|=1 and |veca -vecb|=sqrt3`, then |3`veca+2vecb` |=`

A

7

B

4

C

` sqrt7`

D

`sqrt19`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will use the given conditions and properties of vectors. ### Step 1: Understand the given conditions We know that: 1. \( |\vec{a} + \vec{b}| = 1 \) 2. \( |\vec{a} - \vec{b}| = \sqrt{3} \) ### Step 2: Use the formula for the magnitude of vectors We can square both sides of the equations to eliminate the square roots: - From \( |\vec{a} + \vec{b}| = 1 \): \[ |\vec{a} + \vec{b}|^2 = 1^2 \implies |\vec{a}|^2 + |\vec{b}|^2 + 2\vec{a} \cdot \vec{b} = 1 \] - From \( |\vec{a} - \vec{b}| = \sqrt{3} \): \[ |\vec{a} - \vec{b}|^2 = (\sqrt{3})^2 \implies |\vec{a}|^2 + |\vec{b}|^2 - 2\vec{a} \cdot \vec{b} = 3 \] ### Step 3: Substitute the values of unit vectors Since \( \vec{a} \) and \( \vec{b} \) are unit vectors, we have: - \( |\vec{a}|^2 = 1 \) - \( |\vec{b}|^2 = 1 \) Substituting these into the equations: 1. \( 1 + 1 + 2\vec{a} \cdot \vec{b} = 1 \) \[ 2 + 2\vec{a} \cdot \vec{b} = 1 \implies 2\vec{a} \cdot \vec{b} = 1 - 2 \implies \vec{a} \cdot \vec{b} = -\frac{1}{2} \] 2. \( 1 + 1 - 2\vec{a} \cdot \vec{b} = 3 \) \[ 2 - 2\vec{a} \cdot \vec{b} = 3 \implies -2\vec{a} \cdot \vec{b} = 3 - 2 \implies \vec{a} \cdot \vec{b} = -\frac{1}{2} \] ### Step 4: Find the angle between the vectors The dot product \( \vec{a} \cdot \vec{b} \) can also be expressed in terms of the angle \( \theta \) between them: \[ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta = 1 \cdot 1 \cdot \cos \theta = \cos \theta \] Thus, we have: \[ \cos \theta = -\frac{1}{2} \] This implies that \( \theta = 120^\circ \) or \( \theta = \frac{2\pi}{3} \). ### Step 5: Calculate \( |3\vec{a} + 2\vec{b}| \) Now we need to find \( |3\vec{a} + 2\vec{b}| \). We will square this magnitude: \[ |3\vec{a} + 2\vec{b}|^2 = (3\vec{a} + 2\vec{b}) \cdot (3\vec{a} + 2\vec{b}) \] Expanding this: \[ = 9|\vec{a}|^2 + 4|\vec{b}|^2 + 2(3)(2)(\vec{a} \cdot \vec{b}) \] Substituting the known values: \[ = 9(1) + 4(1) + 12(\vec{a} \cdot \vec{b}) = 9 + 4 + 12(-\frac{1}{2}) \] Calculating this: \[ = 13 - 6 = 7 \] ### Step 6: Final result Thus, we have: \[ |3\vec{a} + 2\vec{b}| = \sqrt{7} \] ### Final Answer \[ |3\vec{a} + 2\vec{b}| = \sqrt{7} \] ---

To solve the problem step by step, we will use the given conditions and properties of vectors. ### Step 1: Understand the given conditions We know that: 1. \( |\vec{a} + \vec{b}| = 1 \) 2. \( |\vec{a} - \vec{b}| = \sqrt{3} \) ### Step 2: Use the formula for the magnitude of vectors ...
Promotional Banner

Topper's Solved these Questions

  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos

Similar Questions

Explore conceptually related problems

If veca , vecb are unit vectors such that |vec a+vecb|=-1 " then " |2veca -3vecb| =

If veca and vecb are non - zero vectors such that |veca + vecb| = |veca - 2vecb| then

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca,vecb are two unit vectors such that |veca + vecb| = 2sqrt3 and |veca -vecb|=6 then the angle between veca and vecb , is

If veca, vecb, vecc are unit vectors such that veca. vecb =0 = veca.vecc and the angle between vecb and vecc is pi/3 , then find the value of |veca xx vecb -veca xx vecc|

If veca , vecb are unit vectors such that the vector veca + 3vecb is peependicular to 7 veca - vecb and veca -4vecb is prependicular to 7 veca -2vecb then the angle between veca and vecb is

Let veca and vecb are vectors such that |veca|=2, |vecb|=3 and veca. vecb=4 . If vecc=(3veca xx vecb)-4vecb , then |vecc| is equal to

If veca, vecb are unit vertors such that veca -vecb is also a unit vector, then the angle between veca and vecb , is

If veca" and "vecb are any two vectors such |veca+vecb|=|veca-vecb| find the angle between veca" and "vecb

if veca and vecb are unit vectors such that veca. vecb = cos theta , then the value of | veca + vecb| , is