Home
Class 12
MATHS
If veca and vecb are unit vectors incli...

If ` veca and vecb` are unit vectors inclined to x-axis at angle ` 30^(@) and 120^(@)` then ` |veca +vecb|` equals

A

`sqrt(2//3)`

B

`sqrt2`

C

`sqrt3`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To find the magnitude of the sum of two unit vectors \( \vec{a} \) and \( \vec{b} \) that are inclined to the x-axis at angles \( 30^\circ \) and \( 120^\circ \) respectively, we can follow these steps: ### Step 1: Represent the vectors in component form Since \( \vec{a} \) and \( \vec{b} \) are unit vectors, we can express them in terms of their components: - For \( \vec{a} \): \[ \vec{a} = \cos(30^\circ) \hat{i} + \sin(30^\circ) \hat{j} = \frac{\sqrt{3}}{2} \hat{i} + \frac{1}{2} \hat{j} \] - For \( \vec{b} \): \[ \vec{b} = \cos(120^\circ) \hat{i} + \sin(120^\circ) \hat{j} = -\frac{1}{2} \hat{i} + \frac{\sqrt{3}}{2} \hat{j} \] ### Step 2: Add the vectors Now, we can add the two vectors: \[ \vec{a} + \vec{b} = \left( \frac{\sqrt{3}}{2} - \frac{1}{2} \right) \hat{i} + \left( \frac{1}{2} + \frac{\sqrt{3}}{2} \right) \hat{j} \] Calculating the components: - For the \( \hat{i} \) component: \[ \frac{\sqrt{3}}{2} - \frac{1}{2} = \frac{\sqrt{3} - 1}{2} \] - For the \( \hat{j} \) component: \[ \frac{1}{2} + \frac{\sqrt{3}}{2} = \frac{1 + \sqrt{3}}{2} \] Thus, \[ \vec{a} + \vec{b} = \left( \frac{\sqrt{3} - 1}{2} \right) \hat{i} + \left( \frac{1 + \sqrt{3}}{2} \right) \hat{j} \] ### Step 3: Calculate the magnitude of the resultant vector The magnitude of \( \vec{a} + \vec{b} \) is given by: \[ |\vec{a} + \vec{b}| = \sqrt{\left( \frac{\sqrt{3} - 1}{2} \right)^2 + \left( \frac{1 + \sqrt{3}}{2} \right)^2} \] Calculating each term: 1. For the \( \hat{i} \) component: \[ \left( \frac{\sqrt{3} - 1}{2} \right)^2 = \frac{(\sqrt{3} - 1)^2}{4} = \frac{3 - 2\sqrt{3} + 1}{4} = \frac{4 - 2\sqrt{3}}{4} = 1 - \frac{\sqrt{3}}{2} \] 2. For the \( \hat{j} \) component: \[ \left( \frac{1 + \sqrt{3}}{2} \right)^2 = \frac{(1 + \sqrt{3})^2}{4} = \frac{1 + 2\sqrt{3} + 3}{4} = \frac{4 + 2\sqrt{3}}{4} = 1 + \frac{\sqrt{3}}{2} \] Now, adding these two results: \[ |\vec{a} + \vec{b}|^2 = \left( 1 - \frac{\sqrt{3}}{2} \right) + \left( 1 + \frac{\sqrt{3}}{2} \right) = 2 \] ### Step 4: Final calculation of the magnitude Taking the square root gives: \[ |\vec{a} + \vec{b}| = \sqrt{2} \] ### Final Answer Thus, the magnitude \( |\vec{a} + \vec{b}| \) equals \( \sqrt{2} \). ---

To find the magnitude of the sum of two unit vectors \( \vec{a} \) and \( \vec{b} \) that are inclined to the x-axis at angles \( 30^\circ \) and \( 120^\circ \) respectively, we can follow these steps: ### Step 1: Represent the vectors in component form Since \( \vec{a} \) and \( \vec{b} \) are unit vectors, we can express them in terms of their components: - For \( \vec{a} \): \[ \vec{a} = \cos(30^\circ) \hat{i} + \sin(30^\circ) \hat{j} = \frac{\sqrt{3}}{2} \hat{i} + \frac{1}{2} \hat{j} \] ...
Promotional Banner

Topper's Solved these Questions

  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos

Similar Questions

Explore conceptually related problems

Let veca and vecb are unit vectors inclined at an angle alpha to each other , if |veca+vecb| lt 1 then

If veca and vecb are two unit vectors inclined at an angle pi/3 then { veca xx (vecb+veca xx vecb)} .vecb is equal to (a) -3/4 (b) 1/4 (c) 3/4 (d) 1/2

If veca and vecb are unit vectors inclined at an angle theta , then the value of |veca-vecb| is

If veca and vecb are unit vectors and theta is the angle between them then show that |veca-vecb|=2sin.(theta)/(2)

Let veca and vecb are two vectors inclined at an angle of 60^(@) , If |veca|=|vecb|=2 ,the the angle between veca and veca + vecb is

if veca and vecb are unit vectors such that veca. vecb = cos theta , then the value of | veca + vecb| , is

Unit vectors veca and vecb ar perpendicular , and unit vector vecc is inclined at an angle theta to both veca and vecb . If alpha veca + beta vecb + gamma (veca xx vecb) then.

If veca and vecb are two vectors of magnitude 1 inclined at 120^(@) , then find the angle between vecb and vecb-veca .

vectors veca and vecb are inclined at an angle theta = 60^(@). " If " |veca|=1, |vecb| =2 , " then " [ (veca + 3vecb) xx ( 3 veca -vecb)] ^(2) is equal to

If veca, vecb and vecc are three units vectors equally inclined to each other at an angle alpha . Then the angle between veca and plane of vecb and vecc is