Home
Class 12
MATHS
Let veca , vecb,vecc be three vectors s...

Let ` veca , vecb,vecc` be three vectors such that
` veca bot ( vecb + vecc), vecb bot ( vecc + veca) and vecc bot ( veca + vecb) , " if " |veca| =1 , |vecb| =2 `,
` |vecc| =3 , " then " | veca + vecb + vecc|` is,

A

` sqrt6`

B

14

C

` sqrt14`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the magnitude of the vector sum \( \vec{a} + \vec{b} + \vec{c} \) given the conditions of perpendicularity and the magnitudes of the vectors. ### Step-by-Step Solution: 1. **Understand the Given Information**: - We have three vectors \( \vec{a}, \vec{b}, \vec{c} \). - The conditions given are: - \( \vec{a} \perp (\vec{b} + \vec{c}) \) implies \( \vec{a} \cdot (\vec{b} + \vec{c}) = 0 \). - \( \vec{b} \perp (\vec{c} + \vec{a}) \) implies \( \vec{b} \cdot (\vec{c} + \vec{a}) = 0 \). - \( \vec{c} \perp (\vec{a} + \vec{b}) \) implies \( \vec{c} \cdot (\vec{a} + \vec{b}) = 0 \). - The magnitudes are given as \( |\vec{a}| = 1 \), \( |\vec{b}| = 2 \), and \( |\vec{c}| = 3 \). 2. **Set Up the Dot Product Equations**: - From \( \vec{a} \cdot (\vec{b} + \vec{c}) = 0 \): \[ \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} = 0 \quad (1) \] - From \( \vec{b} \cdot (\vec{c} + \vec{a}) = 0 \): \[ \vec{b} \cdot \vec{c} + \vec{b} \cdot \vec{a} = 0 \quad (2) \] - From \( \vec{c} \cdot (\vec{a} + \vec{b}) = 0 \): \[ \vec{c} \cdot \vec{a} + \vec{c} \cdot \vec{b} = 0 \quad (3) \] 3. **Identify Zero Dot Products**: - From equations (1), (2), and (3), we can conclude: - \( \vec{a} \cdot \vec{b} = -\vec{a} \cdot \vec{c} \) - \( \vec{b} \cdot \vec{c} = -\vec{b} \cdot \vec{a} \) - \( \vec{c} \cdot \vec{a} = -\vec{c} \cdot \vec{b} \) - This means that all dot products between different vectors are zero: \[ \vec{a} \cdot \vec{b} = 0, \quad \vec{b} \cdot \vec{c} = 0, \quad \vec{c} \cdot \vec{a} = 0 \] 4. **Calculate the Magnitude of \( \vec{a} + \vec{b} + \vec{c} \)**: - Let \( \vec{x} = \vec{a} + \vec{b} + \vec{c} \). - The magnitude squared is given by: \[ |\vec{x}|^2 = |\vec{a} + \vec{b} + \vec{c}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) \] - Since all dot products are zero: \[ |\vec{x}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 \] - Substitute the magnitudes: \[ |\vec{x}|^2 = 1^2 + 2^2 + 3^2 = 1 + 4 + 9 = 14 \] - Therefore: \[ |\vec{x}| = \sqrt{14} \] 5. **Final Answer**: - The magnitude of \( \vec{a} + \vec{b} + \vec{c} \) is \( \sqrt{14} \).

To solve the problem, we need to find the magnitude of the vector sum \( \vec{a} + \vec{b} + \vec{c} \) given the conditions of perpendicularity and the magnitudes of the vectors. ### Step-by-Step Solution: 1. **Understand the Given Information**: - We have three vectors \( \vec{a}, \vec{b}, \vec{c} \). - The conditions given are: - \( \vec{a} \perp (\vec{b} + \vec{c}) \) implies \( \vec{a} \cdot (\vec{b} + \vec{c}) = 0 \). ...
Promotional Banner

Topper's Solved these Questions

  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos

Similar Questions

Explore conceptually related problems

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

If |veca|=4, |vecb|=4 and |vecc|=5 such that veca bot vecb + vecc, vecb bot (vecc + veca) and vecc bot (veca + vecb) , then |veca + vecb + vecc| is:

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

If veca, vecb,vecc are three non-coplanar vectors such that veca xx vecb=vecc,vecb xx vecc=veca,vecc xx veca=vecb , then the value of |veca|+|vecb|+|vecc| is

If veca, vecb, vecc are three non-zero vectors such that veca + vecb + vecc=0 and m = veca.vecb + vecb.vecc + vecc.veca , then:

[ veca + vecb vecb + vecc vecc + veca ]=[ veca vecb vecc ] , then

If veca, vecb, vecc are any three vectors such that (veca+vecb).vecc=(veca-vecb)vecc=0 then (vecaxxvecb)xxvecc is

If veca , vecb , vecc are unit vectors such that veca+ vecb+ vecc= vec0 find the value of (veca* vecb+ vecb* vecc+ vecc*veca) .

Let veca ,vecb , vecc be three unit vectors such that angle between veca and vecb is alpha , vecb and vecc " is " beta and vecc and veca " is " gamma. " if " | veca. + vecb + vecc| =2 , then cos alpha + cos beta + cos gamma =