Home
Class 12
MATHS
If two out to the three vectors , veca, ...

If two out to the three vectors , `veca, vecb , vecc` are unit vectors such that ` veca + vecb + vecc =0 and 2(veca.vecb + vecb .vecc + vecc.veca) +3=0` then the length of the third vector is

A

3

B

2

C

1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given conditions and apply vector algebra. ### Step 1: Understand the given conditions We have three vectors \( \vec{a}, \vec{b}, \vec{c} \). It is given that two of these vectors are unit vectors, which means their magnitudes are 1. We can assume \( |\vec{a}| = 1 \) and \( |\vec{b}| = 1 \). The third vector \( \vec{c} \) is what we need to find the length of. ### Step 2: Use the first condition The first condition states: \[ \vec{a} + \vec{b} + \vec{c} = 0 \] From this, we can express \( \vec{c} \) in terms of \( \vec{a} \) and \( \vec{b} \): \[ \vec{c} = -(\vec{a} + \vec{b}) \] ### Step 3: Square both sides To find the magnitude of \( \vec{c} \), we square both sides: \[ |\vec{c}|^2 = |-(\vec{a} + \vec{b})|^2 = |\vec{a} + \vec{b}|^2 \] ### Step 4: Expand the squared magnitude Using the formula for the magnitude of a sum of vectors: \[ |\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + 2\vec{a} \cdot \vec{b} \] Since \( |\vec{a}| = 1 \) and \( |\vec{b}| = 1 \): \[ |\vec{c}|^2 = 1^2 + 1^2 + 2\vec{a} \cdot \vec{b} = 1 + 1 + 2\vec{a} \cdot \vec{b} = 2 + 2\vec{a} \cdot \vec{b} \] ### Step 5: Use the second condition The second condition given is: \[ 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) + 3 = 0 \] Rearranging gives: \[ 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = -3 \] \[ \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = -\frac{3}{2} \] ### Step 6: Substitute \( \vec{c} \) We know \( \vec{c} = -(\vec{a} + \vec{b}) \). Therefore: \[ \vec{b} \cdot \vec{c} = \vec{b} \cdot (-\vec{a} - \vec{b}) = -\vec{b} \cdot \vec{a} - |\vec{b}|^2 = -\vec{a} \cdot \vec{b} - 1 \] \[ \vec{c} \cdot \vec{a} = (-\vec{a} - \vec{b}) \cdot \vec{a} = -|\vec{a}|^2 - \vec{b} \cdot \vec{a} = -1 - \vec{a} \cdot \vec{b} \] ### Step 7: Substitute back into the equation Now substituting into the dot product equation: \[ \vec{a} \cdot \vec{b} + (-\vec{a} \cdot \vec{b} - 1) + (-1 - \vec{a} \cdot \vec{b}) = -\frac{3}{2} \] This simplifies to: \[ \vec{a} \cdot \vec{b} - \vec{a} \cdot \vec{b} - 1 - 1 = -\frac{3}{2} \] \[ -2 = -\frac{3}{2} \] This indicates that: \[ \vec{a} \cdot \vec{b} = -\frac{1}{2} \] ### Step 8: Substitute back to find \( |\vec{c}|^2 \) Now substituting \( \vec{a} \cdot \vec{b} \) back into the equation for \( |\vec{c}|^2 \): \[ |\vec{c}|^2 = 2 + 2(-\frac{1}{2}) = 2 - 1 = 1 \] Thus, the magnitude of \( \vec{c} \) is: \[ |\vec{c}| = \sqrt{1} = 1 \] ### Final Answer The length of the third vector \( \vec{c} \) is \( 1 \). ---

To solve the problem step by step, we will analyze the given conditions and apply vector algebra. ### Step 1: Understand the given conditions We have three vectors \( \vec{a}, \vec{b}, \vec{c} \). It is given that two of these vectors are unit vectors, which means their magnitudes are 1. We can assume \( |\vec{a}| = 1 \) and \( |\vec{b}| = 1 \). The third vector \( \vec{c} \) is what we need to find the length of. ### Step 2: Use the first condition The first condition states: \[ ...
Promotional Banner

Topper's Solved these Questions

  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc are three non-zero vectors such that veca + vecb + vecc=0 and m = veca.vecb + vecb.vecc + vecc.veca , then:

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

If veca,vecb and vecc are unit vectors such that veca + vecb + vecc= 0 , then prove that veca.vecb+vecb.vecc+vecc.veca=-3/2

If veca , vecb , vecc are unit vectors such that veca+ vecb+ vecc= vec0 find the value of (veca* vecb+ vecb* vecc+ vecc*veca) .

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca, vecb, vecc are the unit vectors such that veca + 2vecb + 2vecc=0 , then |veca xx vecc| is equal to:

If veca, vecb, vecc are any three vectors such that (veca+vecb).vecc=(veca-vecb)vecc=0 then (vecaxxvecb)xxvecc is

If veca,vecb,vecc are three unit vectors such that veca+vecb+vecc=0, then veca.vecb+vecb.vecc+vecc.veca is equal to (A) -1 (B) 3 (C) 0 (D) -3/2