Home
Class 12
MATHS
If |veca|=3,|vecb|= 5 and |vecc|=4 and v...

If `|veca|=3,|vecb|= 5 and |vecc|=4 and veca+ vecb + vecc =vec0` then the value of `( veca. vecb + vecb.vecc)` is equal tio

A

0

B

-25

C

25

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B

we have,
` veca +vecb + vecc= vec0`
` Rightarrow ( veca + vecb + vecc) , vecb = vec0 .vecb` [ Taking dot product with ` vecb`]
` veca.vecb + vecb.vecb + vecc.vecb =0`
` Rightarrow veca. Vecb + |vecb|^(2) + vecb.vecc =0 Rightarrow veca. vecb + vecb.vecc=-25`
Promotional Banner

Topper's Solved these Questions

  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos

Similar Questions

Explore conceptually related problems

If |veca|=3, |vecb|=1, |vecc|=4 and veca + vecb + vecc= vec0 , find the value of veca.vecb+ vecb.vecc + vecc.veca .

If veca,vecb, vecc are three vectors such that |veca |= 5, |vecb| = 12 and | vecc|=13 and veca+vecb+vecc=0 then veca.vecb+vecb.vecc+vecc.veca is equal to

If veca,vecb and vecc are unit vectors such that veca+vecb+vecc=vec0 then the value of veca.vecb+vecb.vecc+vecc.veca is a) 1 b) 0 c) 3 d) -3/2

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If veca, vecb and vecc are three vectors, such that |veca|=2, |vecb|=3, |vecc|=4, veca. vecc=0, veca. vecb=0 and the angle between vecb and vecc is (pi)/(3) , then the value of |veca xx (2vecb - 3 vecc)| is equal to

If veca , vecb , vecc are unit vectors such that veca+ vecb+ vecc= vec0 find the value of (veca* vecb+ vecb* vecc+ vecc*veca) .

If |veca|=4, |vecb|=4 and |vecc|=5 such that veca bot vecb + vecc, vecb bot (vecc + veca) and vecc bot (veca + vecb) , then |veca + vecb + vecc| is:

if veca + vecb + vecc=0 , then show that veca xx vecb = vecb xx vecc = vecc xx veca .