Home
Class 12
MATHS
If veca+vecb+vecc=vec0, |veca| = 3, |vec...

If `veca+vecb+vecc=vec0, |veca| = 3, |vecb| = 5, |vecc| = 7`, then angle between `veca` and `vecb` is : a. `(pi)/(2)` b. `(pi)/(3)` c. `(pi)/4` d. `(pi)/(6)`

A

`pi/2`

B

` pi/4`

C

` pi/6`

D

` pi/3`

Text Solution

Verified by Experts

The correct Answer is:
D

we have,
` veca + vecb +vecc= vec0`
` Rightarrow vecc = - ( veca + vecb)`
` Rightarrow |vecc| = |-(veca + vecb)|`
` Rightarrow |vecb|^(2) = |veca + vecb|^(2)`
` Rightarrow |vecc|^(2) =|veca|^(2) + |vecb|^(2) + 2( veca.vecb)`
` Rightarrow |veca|^(2) = |veca|^(2) +|vecb|^(2) + 2 |veca||vecb| cos theta`
where ` theta` is angle between ` veca and vecb`.
` Rightarrow 49 = 9 + 25 + 30 cos theta`
` Rightarrow 15= 30 cos theta Rightarrow cos theta = 1/2 Rightarrow theta = pi/3`
Promotional Banner

Topper's Solved these Questions

  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos

Similar Questions

Explore conceptually related problems

If veca +vecb +vecc =vec0, |veca| =3 , |vecb|=5 and |vecc| =7 , then the angle between veca and vecb is

veca+vecb+vecc=vec0, |veca|=3, |vecb|=5,|vecc|=9 ,find the angle between veca and vecc .

If veca +vecb +vecc=0, |veca|=3,|vecb|=5, |vecc|=7 , then find the angle between veca and vecb .

If veca +vecb +vecc=0, |veca|=3,|vecb|=5, |vecc|=7 , then find the angle between veca and vecb .

If veca +vecb +vecc=0, |veca|=3,|vecb|=5, |vecc|=7 , then find the angle between veca and vecb .

If veca+vecb+vecc=0,|veca|=3,|vecb|=5,|vecc|=7 find the angle between veca and vecb

If vecA+ vecB = vecC and A+B+C=0 , then the angle between vecA and vecB is :

If vecA+ vecB = vecC and A+B+C=0 , then the angle between vecA and vecB is :

If |veca.vecb|=sqrt(3)|vecaxxvecb| then the angle between veca and vecb is (A) pi/6 (B) pi/4 (C) pi/3 (D) pi/2

If veca and vecb are two vectors, such that veca.vecblt0 and |veca.vecb|=|vecaxxvecb| then the angle between the vectors veca and vecb is (a) pi (b) (7pi)/4 (c) pi/4 (d) (3pi)/4