Home
Class 12
MATHS
If veca, vecb and vecc are unit vectors ...

If `veca, vecb and vecc` are unit vectors satisfying `|veca-vecb|^(2)+|vecb-vecc|^(2)+|vecc-veca|^(2)=9 " then find the value of " |2veca+ 5vecb+ 5vecc|` .

A

0

B

1

C

2

D

3

Text Solution

Verified by Experts

The correct Answer is:
D

we know that
` |veca + vecb + vecc|^(2) = |veca|^(2) +|vecb|^(2) +|vecc|^(2) + 2 ( veca .vecb + vecb.vecc + vecc.veca)`
` and |veca -vecb|^(2) + |vecb -vecc|^(2) +|vecc -veca|^(2) `
` = 2 (|veca|^(2) +|vecb|^(2) +|vecc|^(2) ) -2 (veca.vecb + vecb.vecc + vecc.veca)`
` |veca -vecb|^(2) + |vecb - vecc|^(2) + |vecc -veca|^(2) `
` = 3 { |veca|^(2) +|vecb|^(2) |vecc|^(2) } - |veca +vecb +vecc|^(2)`
` Rightarrow 9 = 3xx 3 - |veca + vecb + vecc|^(2) `
` Rightarrow |veca + vecb + vecc|^(2) =0`
` Rightarrow veca + vecb + vecc = vec0`
` Rightarrow vecb + vecc =- veca`
` therefore | 2 veca + 5 vecb + 5vecc| = | 2 vecb +5( -veca)| = 3|veca|=3`
Promotional Banner

Topper's Solved these Questions

  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,7vecb-9vecc,12vecc-23veca)]

Let veca vecb and vecc be pairwise mutually perpendicular vectors, such that |veca|=1, |vecb|=2, |vecc| = 2 , the find the length of veca +vecb + vecc .

Let veca vecb and vecc be pairwise mutually perpendicular vectors, such that |veca|=1, |vecb|=2, |vecc| = 2 , the find the length of veca +vecb + vecc .

If veca, vecb, vecc are unit vectors such that veca. vecb =0 = veca.vecc and the angle between vecb and vecc is pi/3 , then find the value of |veca xx vecb -veca xx vecc|

Let veca, vecb, vecc be three unit vectors and veca.vecb=veca.vecc=0 . If the angle between vecb and vecc is pi/3 then find the value of |[veca vecb vecc]|

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

If veca,vecbandvecc are three vectors such that veca+vecb+vecc=0and|veca|=2,|vecb|=3and|vecc|=5 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca, vecb,vecc are three non-coplanar vectors such that veca xx vecb=vecc,vecb xx vecc=veca,vecc xx veca=vecb , then the value of |veca|+|vecb|+|vecc| is

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|