Home
Class 12
MATHS
The vactors veca = 3hati -2hatj + 2hatk...

The vactors ` veca = 3hati -2hatj + 2hatk and vecb =- hati -2hatk` are the adjacent sides of a parallelogram. Then , the acute angle between ` veca and vecb` is

A

`pi//4`

B

` pi//3`

C

` 3pi//4`

D

`2pi//3`

Text Solution

AI Generated Solution

The correct Answer is:
To find the acute angle between the vectors \(\vec{a} = 3\hat{i} - 2\hat{j} + 2\hat{k}\) and \(\vec{b} = -\hat{i} - 2\hat{k}\), we can follow these steps: ### Step 1: Calculate the dot product of the vectors \(\vec{a}\) and \(\vec{b}\). The dot product \(\vec{a} \cdot \vec{b}\) is given by: \[ \vec{a} \cdot \vec{b} = (3)(-1) + (-2)(0) + (2)(-2) \] Calculating this: \[ \vec{a} \cdot \vec{b} = -3 + 0 - 4 = -7 \] ### Step 2: Calculate the magnitudes of the vectors \(\vec{a}\) and \(\vec{b}\). The magnitude of \(\vec{a}\) is: \[ |\vec{a}| = \sqrt{(3)^2 + (-2)^2 + (2)^2} = \sqrt{9 + 4 + 4} = \sqrt{17} \] The magnitude of \(\vec{b}\) is: \[ |\vec{b}| = \sqrt{(-1)^2 + (0)^2 + (-2)^2} = \sqrt{1 + 0 + 4} = \sqrt{5} \] ### Step 3: Use the dot product and magnitudes to find the cosine of the angle \(\theta\). The cosine of the angle \(\theta\) between the two vectors is given by: \[ \cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|} \] Substituting the values we found: \[ \cos \theta = \frac{-7}{\sqrt{17} \cdot \sqrt{5}} = \frac{-7}{\sqrt{85}} \] ### Step 4: Find the angle \(\theta\). Since we are interested in the acute angle, we take the absolute value of the cosine: \[ \cos \theta = \left|\frac{-7}{\sqrt{85}}\right| = \frac{7}{\sqrt{85}} \] Now, we can find \(\theta\) using the inverse cosine function: \[ \theta = \cos^{-1}\left(\frac{7}{\sqrt{85}}\right) \] ### Step 5: Determine the acute angle. Since \(\cos^{-1}\) will give us the angle in radians, we can calculate this value to find the acute angle. ### Final Answer: The acute angle \(\theta\) between the vectors \(\vec{a}\) and \(\vec{b}\) is given by: \[ \theta = \cos^{-1}\left(\frac{7}{\sqrt{85}}\right) \]

To find the acute angle between the vectors \(\vec{a} = 3\hat{i} - 2\hat{j} + 2\hat{k}\) and \(\vec{b} = -\hat{i} - 2\hat{k}\), we can follow these steps: ### Step 1: Calculate the dot product of the vectors \(\vec{a}\) and \(\vec{b}\). The dot product \(\vec{a} \cdot \vec{b}\) is given by: \[ \vec{a} \cdot \vec{b} = (3)(-1) + (-2)(0) + (2)(-2) \] ...
Promotional Banner

Topper's Solved these Questions

  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos

Similar Questions

Explore conceptually related problems

If veca=2hati-hatj+2hatk and vecb=-hati+hatj-hatk calculate veca+vecb

If veca=2hati-3hatj-hatk and vecb=hati+4hatj-2hatk , then vecaxxvecb is

find vecA xx vecB if vecA = hati - 2 hatj + 4 hatk and vecB = 3 hati - hatj + 2hatk

If veca = 2hati -3hatj-1hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

If veca=3hati+hatj-4hatk and vecb=6hati+5hatj-2hatk find |veca Xvecb|

If veca=4hati+3hatj+2hatk and vecb=3hati+2hatk , find |vecbxx2veca|

Find |vecaxxvecb| , if veca=2hati-7hatj+7hatk and vecb=3hati-2hatj+2hatk

The projection of vector veca=2hati+3hatj+2hatk along vecb=hati+2hatj+1hatk is

If vecA=3hati+hatj+2hatk and vecB=2hati-2hatj+4hatk , then value of |vecA X vecB| will be

If veca =hati + hatj-hatk, vecb = - hati + 2hatj + 2hatk and vecc = - hati +2hatj -hatk , then a unit vector normal to the vectors veca + vecb and vecb -vecc , is