Home
Class 12
MATHS
If veca,vecb are two unit vectors such t...

If `veca,vecb` are two unit vectors such that ` |veca + vecb| = 2sqrt3 and |veca -vecb|=6` then the angle between ` veca and vecb`, is

A

`pi/3`

B

` (2pi)/3`

C

`pi/4`

D

` pi/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the angle between two unit vectors \(\vec{a}\) and \(\vec{b}\) given the magnitudes \(|\vec{a} + \vec{b}| = 2\sqrt{3}\) and \(|\vec{a} - \vec{b}| = 6\). ### Step-by-Step Solution: 1. **Understanding Unit Vectors**: Since \(\vec{a}\) and \(\vec{b}\) are unit vectors, we have: \[ |\vec{a}| = 1 \quad \text{and} \quad |\vec{b}| = 1 \] 2. **Using the Magnitude Formula**: We can express the magnitudes of the sum and difference of two vectors in terms of their dot product: \[ |\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + 2\vec{a} \cdot \vec{b} \] \[ |\vec{a} - \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 - 2\vec{a} \cdot \vec{b} \] 3. **Substituting Known Values**: Substituting \(|\vec{a}|^2 = 1\) and \(|\vec{b}|^2 = 1\): \[ |\vec{a} + \vec{b}|^2 = 1 + 1 + 2\vec{a} \cdot \vec{b} = 2 + 2\vec{a} \cdot \vec{b} \] \[ |\vec{a} - \vec{b}|^2 = 1 + 1 - 2\vec{a} \cdot \vec{b} = 2 - 2\vec{a} \cdot \vec{b} \] 4. **Calculating the Squares of the Magnitudes**: Given \(|\vec{a} + \vec{b}| = 2\sqrt{3}\): \[ |\vec{a} + \vec{b}|^2 = (2\sqrt{3})^2 = 12 \] Thus, \[ 12 = 2 + 2\vec{a} \cdot \vec{b} \implies 10 = 2\vec{a} \cdot \vec{b} \implies \vec{a} \cdot \vec{b} = 5 \] Given \(|\vec{a} - \vec{b}| = 6\): \[ |\vec{a} - \vec{b}|^2 = 6^2 = 36 \] Thus, \[ 36 = 2 - 2\vec{a} \cdot \vec{b} \implies 34 = -2\vec{a} \cdot \vec{b} \implies \vec{a} \cdot \vec{b} = -17 \] 5. **Setting Up the Equations**: We have two equations: \[ \vec{a} \cdot \vec{b} = 5 \quad \text{and} \quad \vec{a} \cdot \vec{b} = -17 \] This indicates a contradiction, so we need to check our calculations. 6. **Finding the Angle**: The angle \(\theta\) between the two vectors can be found using the dot product: \[ \vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|\cos(\theta) = \cos(\theta) \] We can use the relationship: \[ \tan\left(\frac{\theta}{2}\right) = \frac{|\vec{a} - \vec{b}|}{|\vec{a} + \vec{b}|} \] Substituting the values: \[ \tan\left(\frac{\theta}{2}\right) = \frac{6}{2\sqrt{3}} = \frac{6}{2\sqrt{3}} = \frac{3}{\sqrt{3}} = \sqrt{3} \] 7. **Finding \(\theta\)**: Therefore: \[ \frac{\theta}{2} = \frac{\pi}{3} \implies \theta = \frac{2\pi}{3} \] ### Conclusion: The angle between the vectors \(\vec{a}\) and \(\vec{b}\) is \(\frac{2\pi}{3}\).

To solve the problem, we need to find the angle between two unit vectors \(\vec{a}\) and \(\vec{b}\) given the magnitudes \(|\vec{a} + \vec{b}| = 2\sqrt{3}\) and \(|\vec{a} - \vec{b}| = 6\). ### Step-by-Step Solution: 1. **Understanding Unit Vectors**: Since \(\vec{a}\) and \(\vec{b}\) are unit vectors, we have: \[ |\vec{a}| = 1 \quad \text{and} \quad |\vec{b}| = 1 ...
Promotional Banner

Topper's Solved these Questions

  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos

Similar Questions

Explore conceptually related problems

If veca . vecb =ab then the angle between veca and vecb is

IF |veca|=sqrt(3), |vecb|=2 and |veca-vecb|=3 find the angle between veca and vecb .

If veca and vecb asre two vectors such that |veca|=2, |vecb| = 7 and vecaxxvecb=3hati+6hatk find the angle between veca and vecb

If veca, vecb are unit vectors such that |veca +vecb|=1 and |veca -vecb|=sqrt3 , then |3 veca+2vecb |=

If | veca + vecb|=| veca - vecb| , then what is the angle between veca and vecb ?

If |veca - vecb|=|veca| =|vecb|=1 , then the angle between veca and vecb , is

If veca and vecb are two unit vectors such that veca+2vecb and 5veca-4vecb are perpendicular to each other, then the angle between veca and vecb is

If veca and vecb are unit vectors such that (veca +vecb). (2veca + 3vecb)xx(3veca - 2vecb)=vec0 then angle between veca and vecb is

If veca and vecb are non - zero vectors such that |veca + vecb| = |veca - 2vecb| then

If veca, vecb are unit vertors such that veca -vecb is also a unit vector, then the angle between veca and vecb , is