Home
Class 12
MATHS
If veca is any non-zero vector, then (ve...

If `veca` is any non-zero vector, then `(veca.hati)hati+(veca.hatj)hatj+(veca.veck)hatk` is equal to …….

A

`vecr`

B

` 2vecr`

C

`3vecr`

D

`vec0`

Text Solution

Verified by Experts

The correct Answer is:
A

Let `vecr= x hati + y hat j + zhatk` be an arbitrary vector. Then ,
` vecr.hati = ( x hati + yhatj + zhatk) .hati =x ( hati .hati) +y (hatj .hati) +z (hatk .hati) =x`
` vecr.hatj = ( xhati + yhatj + zhatk) .hatk= x ( hati .hatk)+ y (hatj .hatk) +z (hatk .hatk)`
and ` vecr.hatk = ( xhati +yhatj +zhatk).hatk= x ( hati.hatk) + y (hatj.hatk) +z (hatk.hatk) `
Putting the values of x,y,z in `vecr = xhati + yhatj + zhatk ` . we obtain
`vecr= ( vecr.hati) hati +( vecr.hatj) hatj+ ( vecr. hatk) hatk`
Promotional Banner

Topper's Solved these Questions

  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos

Similar Questions

Explore conceptually related problems

If veca,vecb are non-collinear vectors, then [(veca,vecb,hati)]hati+[(veca,vecb,hatj)]hatj+[(veca,vecb,hatk)]hatk=

If veca vecb are non zero and non collinear vectors, then [(veca, vecb, veci)]hati+[(veca, vecb, vecj)]hatj+[(veca, vecb, veck)]hatk is equal to

If veca=hati+hatj,vecb=hati-hatj , then veca.vecb=

For any vector veca |veca xx hati|^(2) + |veca xx hatj|^(2) + |veca xx hatk|^(2) is equal to

For any vector veca |veca xx hati|^(2) + |veca xx hatj|^(2) + |veca xx hatk|^(2) is equal to

Statement 1: If veca, vecb are non zero and non collinear vectors, then vecaxxvecb=[(veca, vecb, hati)]hati+[(veca, vecb, hatj)]hatj+[(veca, vecb, hatk)]hatk Statement 2: For any vector vecr vecr=(vecr.hati)hati+(vecr.hatj)hatj+(vecr.hatk)hatk

If veca satisfies vecaxx(hati+2hatj+hatk)=hati-hatk" then " veca is equal to

If veca=2hati + hatj + hatk , vecb=hati + 2hatj + 2hatk then [veca vecb veci] hati + [veca vecb vecj] hatj + [veca vecb hatk] k is equal to

If veca is any then |veca.hati|^2+|veca.hatj|^2+|veca.hatk|^2= (A) |veca|^2 (B) |veca| (C) 2|vecalpha| (D) none of these

Let veca=hati+hatj-hatk and vecb=2hati-hatj+hatk . If vecc is a non - zero vector perpendicular to both veca and vecb , such that its component along x, y, z axes are rational numbers, then |vecc| is