Home
Class 12
MATHS
For any vector vecr, (vecr.hati) ^(2) + ...

For any vector `vecr, (vecr.hati) ^(2) + (vecr.hatj)^(2) + ( vecr.hatk)^(2) ` is equal to

A

1

B

`|vecr|`

C

`vecr`

D

`|vecr|^(2)`

Text Solution

Verified by Experts

The correct Answer is:
D

Let `vecr= xhati +y hatj +z hatk,` Then ,
` vecr.hati =x, vecr.hatj =y and vecr.hatk =z `
` ( vecr.hati)^(2) + ( vecr.hatj)^(2) + ( vecr.hatk) ^(2) =x^(2) +y^(2) +z^(2) = |vecr|^(2)`
Promotional Banner

Topper's Solved these Questions

  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos

Similar Questions

Explore conceptually related problems

Given any vector, vecr,|vecr xx hati|^(2) + |vecr xx hatj|^(2) + |vecr xx hatk|^(2) equals to:

Statement 1: If veca, vecb are non zero and non collinear vectors, then vecaxxvecb=[(veca, vecb, hati)]hati+[(veca, vecb, hatj)]hatj+[(veca, vecb, hatk)]hatk Statement 2: For any vector vecr vecr=(vecr.hati)hati+(vecr.hatj)hatj+(vecr.hatk)hatk

Statement 1: Let vecr be any vector in space. Then, vecr=(vecr.hati)hati+(vecr.hatj)hatj+(vecr.hatk)hatk Statement 2: If veca, vecb, vecc are three non-coplanar vectors and vecr is any vector in space then vecr={([(vecr, vecb, vecc)])/([(veca, vecb, vecc)])}veca+{([(vecr, vecc, veca)])/([(veca, vecb, vecc)])}vecb+{([(vecr, veca, vecb)])/([(veca, vecb, vecc)])}vecc

Let veca = hati + hatj + hatk and let vecr be a variable vector such that vecr.hati, vecr.hatj and vecr.hatk are posititve integers. If vecr.veca le 12 , then the total number of such vectors is:

Let A be the given point whose position vector relative to an origin O be veca and vec(ON)=vecn. let vecr be the position vector of any point P which lies on the plane passing through A and perpendicular to ON.Then for any point P on the plane, vec(AP).vecn=0 or, (vecr-veca).vecn=0 or vecr.vecn=veca.vecn or , vecr.hatn=p where p ils the perpendicular distance of the plane from origin. The equation fo the plane which ponts contains the line vecr=2hati+t(hatj-hatk0 where it is scalar and perpendicular to the plane vecr.(hati-hatk)=3 is (A) vecr.(hati-hatj-hatk)=2 (B) vecr.(hati+hatj-hatk)=2 (C) vecr.(hati+hatj+hatk)=2 (D) vecr.(2hati+hatj-hatk)=4

Prove that the equaton of a plane through point (2,-4,5) and the line o lintersection of the planes vecr.(2hati+3hatj-4hatk) = 1 and vecr.(3hati+hatj-2hatk) = 2 is vecr.(2hati+8hatj+7hatk) = 7 .

If the point of intersection of the line vecr = (hati + 2 hatj + 3 hatk ) + lambda( 2 hati + hatj+ 2hatk ) and the plane vecr (2 hati - 6 hatj + 3 hatk) + 5=0 lies on the plane vec r ( hati + 75 hatj + 60 hatk) -alpha =0, then 19 alpha + 17 is equal to :

The vector parallel to the line of intersection of the planes vecr.(3hati-hatj+hatk) = 1 and vecr.(hati+4hatj-2hatk)=2 is :

The plane through the point (-1,-1,-1) nd containing the line of intersection of the planes vecr.(hati+3hatj-hatk)=0 ,vecr.(hatj+2hatk)=0 is (A) vecr.(hati+2hatj-3hatk)=0 (B) vecr.(hati+4hatj+hatk)=0 (C) vecr.(hati+5hatj-5hatk)=0 (D) vecr.(hati+hatj-3hatk)=0

If the planes vecr.(hati+hatj+hatk)=q_(1),vecr.(hati+2ahatj+hatk)=q_(2)andvecr.(ahati+a^(2)hatj+hatk)=q_(3) intersect in a line, then the value of a is