Home
Class 12
MATHS
If veca = 2hati -3hatj-1hatk and vecb =h...

If `veca = 2hati -3hatj-1hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb` is

A

` 10 hati +2hatj +11hatk`

B

` 10hati +3hatj + 11hatk`

C

`10hati- 3hatj +11hatk`

D

`10hati -3hatj -10hatk`

Text Solution

AI Generated Solution

The correct Answer is:
To find the cross product of the vectors \(\vec{a}\) and \(\vec{b}\), we can follow these steps: Given: \[ \vec{a} = 2\hat{i} - 3\hat{j} - 1\hat{k} \] \[ \vec{b} = \hat{i} + 4\hat{j} - 2\hat{k} \] ### Step 1: Set up the determinant for the cross product The cross product \(\vec{a} \times \vec{b}\) can be computed using the determinant of a matrix formed by the unit vectors and the components of the vectors \(\vec{a}\) and \(\vec{b}\). \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -3 & -1 \\ 1 & 4 & -2 \end{vmatrix} \] ### Step 2: Calculate the determinant To calculate the determinant, we can expand it as follows: \[ \vec{a} \times \vec{b} = \hat{i} \begin{vmatrix} -3 & -1 \\ 4 & -2 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & -1 \\ 1 & -2 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & -3 \\ 1 & 4 \end{vmatrix} \] ### Step 3: Compute the 2x2 determinants 1. For \(\hat{i}\): \[ \begin{vmatrix} -3 & -1 \\ 4 & -2 \end{vmatrix} = (-3)(-2) - (-1)(4) = 6 + 4 = 10 \] 2. For \(\hat{j}\): \[ \begin{vmatrix} 2 & -1 \\ 1 & -2 \end{vmatrix} = (2)(-2) - (-1)(1) = -4 + 1 = -3 \] 3. For \(\hat{k}\): \[ \begin{vmatrix} 2 & -3 \\ 1 & 4 \end{vmatrix} = (2)(4) - (-3)(1) = 8 + 3 = 11 \] ### Step 4: Substitute back into the equation Now substituting these values back into our expression for the cross product: \[ \vec{a} \times \vec{b} = 10\hat{i} - (-3)\hat{j} + 11\hat{k} \] \[ = 10\hat{i} + 3\hat{j} + 11\hat{k} \] ### Final Answer Thus, the cross product \(\vec{a} \times \vec{b}\) is: \[ \vec{a} \times \vec{b} = 10\hat{i} + 3\hat{j} + 11\hat{k} \] ---

To find the cross product of the vectors \(\vec{a}\) and \(\vec{b}\), we can follow these steps: Given: \[ \vec{a} = 2\hat{i} - 3\hat{j} - 1\hat{k} \] \[ \vec{b} = \hat{i} + 4\hat{j} - 2\hat{k} ...
Promotional Banner

Topper's Solved these Questions

  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos

Similar Questions

Explore conceptually related problems

If veca=2hati-3hatj-hatk and vecb=hati+4hatj-2hatk , then vecaxxvecb is

If veca=2hati-hatj+hatk and vecb=3hati+4hatj-hatk , prove that vecaxxvecb represents a vector which perpendicular to both veca and vecb .

If veca=2hati + hatj + hatk , vecb=hati + 2hatj + 2hatk then [veca vecb veci] hati + [veca vecb vecj] hatj + [veca vecb hatk] k is equal to

If veca=hati+hatj + hatk and vecb = hati - 2 hatj+hatk then find the vector vecc such that veca.vecc =2 and veca xx vecc=vecb .

If veca=2hati-hatj+2hatk and vecb=-hati+hatj-hatk calculate veca+vecb

If veca=3hati+hatj-4hatk and vecb=6hati+5hatj-2hatk find |veca Xvecb|

If veca=5hati-hatj-3hatk and vecb=hati+3hatj-5hatk , then show that the vectors veca+vecb and veca-vecb are perpendicular.

If veca = (-hati + hatj - hatk) and vecb = (2hati- 2hatj + 2hatk) then find the unit vector in the direction of (veca + vecb) .

If vecA=2hati+3hatj-hatk and vecB=-hati+3hatj+4hatk then projection of vecA on vecB will be

If veca=hati+2hatj-3hatk and vecb=3hati+hatj+2hatk show that the vectors veca+vecb and veca-vecb are perpendicular to other.