Home
Class 12
MATHS
For any vector veca |veca xx hati|^(...

For any vector ` veca`
` |veca xx hati|^(2) + |veca xx hatj|^(2) + |veca xx hatk|^(2) ` is equal to

A

` |veca|^(2)`

B

` 2 |veca|^(2)`

C

` 3|veca|^(2)`

D

`2 |veca|`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ |\vec{a} \times \hat{i}|^2 + |\vec{a} \times \hat{j}|^2 + |\vec{a} \times \hat{k}|^2 \] where \(\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}\). ### Step 1: Calculate \(\vec{a} \times \hat{i}\) Using the definition of the cross product: \[ \vec{a} \times \hat{i} = (a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}) \times \hat{i} \] Calculating each term: - \(\hat{i} \times \hat{i} = 0\) - \(\hat{j} \times \hat{i} = -\hat{k}\) - \(\hat{k} \times \hat{i} = \hat{j}\) Thus, \[ \vec{a} \times \hat{i} = a_2(-\hat{k}) + a_3(\hat{j}) = -a_2 \hat{k} + a_3 \hat{j} \] ### Step 2: Calculate the magnitude squared of \(\vec{a} \times \hat{i}\) \[ |\vec{a} \times \hat{i}|^2 = |-a_2 \hat{k} + a_3 \hat{j}|^2 = (-a_2)^2 + (a_3)^2 = a_2^2 + a_3^2 \] ### Step 3: Calculate \(\vec{a} \times \hat{j}\) Now, calculate \(\vec{a} \times \hat{j}\): \[ \vec{a} \times \hat{j} = (a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}) \times \hat{j} \] Calculating each term: - \(\hat{i} \times \hat{j} = \hat{k}\) - \(\hat{j} \times \hat{j} = 0\) - \(\hat{k} \times \hat{j} = -\hat{i}\) Thus, \[ \vec{a} \times \hat{j} = a_1 \hat{k} - a_3 \hat{i} \] ### Step 4: Calculate the magnitude squared of \(\vec{a} \times \hat{j}\) \[ |\vec{a} \times \hat{j}|^2 = |a_1 \hat{k} - a_3 \hat{i}|^2 = (a_1)^2 + (-a_3)^2 = a_1^2 + a_3^2 \] ### Step 5: Calculate \(\vec{a} \times \hat{k}\) Now, calculate \(\vec{a} \times \hat{k}\): \[ \vec{a} \times \hat{k} = (a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}) \times \hat{k} \] Calculating each term: - \(\hat{i} \times \hat{k} = -\hat{j}\) - \(\hat{j} \times \hat{k} = \hat{i}\) - \(\hat{k} \times \hat{k} = 0\) Thus, \[ \vec{a} \times \hat{k} = -a_1 \hat{j} + a_2 \hat{i} \] ### Step 6: Calculate the magnitude squared of \(\vec{a} \times \hat{k}\) \[ |\vec{a} \times \hat{k}|^2 = |-a_1 \hat{j} + a_2 \hat{i}|^2 = (-a_1)^2 + (a_2)^2 = a_1^2 + a_2^2 \] ### Step 7: Combine the results Now, we can combine all the results: \[ |\vec{a} \times \hat{i}|^2 + |\vec{a} \times \hat{j}|^2 + |\vec{a} \times \hat{k}|^2 = (a_2^2 + a_3^2) + (a_1^2 + a_3^2) + (a_1^2 + a_2^2) \] This simplifies to: \[ = 2(a_1^2 + a_2^2 + a_3^2) \] ### Step 8: Final Result Recognizing that \(a_1^2 + a_2^2 + a_3^2\) is the square of the magnitude of \(\vec{a}\): \[ |\vec{a}|^2 = a_1^2 + a_2^2 + a_3^2 \] Thus, we can express the final result as: \[ |\vec{a} \times \hat{i}|^2 + |\vec{a} \times \hat{j}|^2 + |\vec{a} \times \hat{k}|^2 = 2 |\vec{a}|^2 \]

To solve the problem, we need to evaluate the expression: \[ |\vec{a} \times \hat{i}|^2 + |\vec{a} \times \hat{j}|^2 + |\vec{a} \times \hat{k}|^2 \] where \(\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}\). ...
Promotional Banner

Topper's Solved these Questions

  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos

Similar Questions

Explore conceptually related problems

For any vectors veca and vecb, (veca xx hati) + (vecb xx hati) + ( veca xx hatj) . (vecb xx hatj) + (veca xx hatk ) .(vecb xx hatk) is always equal to

For any vectors veca and vecb, (veca xx hati) + (vecb xx hati) + ( veca xx hatj) . (vecb xx hatj) + (veca xx hatk ) .(vecb xx hatk) is always equal to

If veca is any vector, then (vec a xx vec i)^2+(vec a xx vecj)^2+(veca xx vec k)^2 is equal to

If veca=2hati + hatj + hatk , vecb=hati + 2hatj + 2hatk then [veca vecb veci] hati + [veca vecb vecj] hatj + [veca vecb hatk] k is equal to

If veca and vecb are non-zero, non parallel vectors, then the value of |veca + vecb+veca xx vecb|^(2) +|veca + vecb-veca xx vecb|^(2) equals

Resolved part of vector veca and along vector vecb " is " veca1 and that prependicular to vecb " is " veca2 then veca1 xx veca2 is equl to

If vecb and vecc are unit vectors, then for any arbitary vector veca, (((veca xx vecb) + (veca xx vecc))xx (vecb xx vecc)) .(vecb -vecc) is always equal to

Let veca = 2hati + hatj + hatk, and vecb = hati+ hatj if c is a vector such that veca .vecc = |vecc|, |vecc -veca| = 2sqrt2 and the angle between veca xx vecb and vec is 30^(@) , then |(veca xx vecb)|xx vecc| is equal to

If veca=hatj-hatk and vecc=hati+hatj+hatk are given vectors, and vecb is such that veca.vecb=3 and vecaxxvecb+vecc=0 than |vecb|^(2) is equal to ………………

If veca vecb are non zero and non collinear vectors, then [(veca, vecb, veci)]hati+[(veca, vecb, vecj)]hatj+[(veca, vecb, veck)]hatk is equal to