Home
Class 12
MATHS
Prove that (veca.hati)(vecaxxhati)+(veca...

Prove that `(veca.hati)(vecaxxhati)+(veca.hatj)(vecaxxhatj)+(veca.hatk)(vecaxxhatk)=vec0`

A

` 3veca`

B

`veca`

C

`vec0`

D

`2veca`

Text Solution

Verified by Experts

The correct Answer is:
C

Let `veca =a_(1)hati+a_(2)hati +a_(2)hatj +a_(3)hatk`, Then,
` veca.hati=a_(1),veca.hatj=a_(2), veca.hatk =a_(3)`
` veca xx hati =- a_(2) hatk + a_(2) hatj ,veca xx hatj = a_(1)hatk -a_(3)hati , veca xx hatk = - a_(1)hatk + a_(2)hati `
` (veca .hati) (veca xx hati) + (veca .hatj) (veca xx hatj) + ( veca .hatk) (veca xx hatk)`
` = a_(1) (-a_(2)hatk + a_(3)hatj) + a_(2) (a_(1)hatk -a_(3) hati) + a_(3) (-a_(1)hatj + a_(2)hati) = vec0`
Promotional Banner

Topper's Solved these Questions

  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos

Similar Questions

Explore conceptually related problems

Assertion: Let veca and vecb be any two vectors (vecaxxhati).(vecbxxhati)+(vecaxxhatj).(vecbxxhatj)+(vecaxxhatk).(vecbxxhatk)=2veca.vecb., Reason: (veca.hati)(vecb.hati)+(veca.hatj)(vecb.hatj)+(veca.hatk)(vecb.hatk)=veca.vecb. (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Prove that (veca.(vecbxxhati))hati+(veca.(vecbxxhatj))hatj+ (veca.(vecbxxhatk))hatk=vecaxxvecb

For any vectors veca and vecb, (veca xx hati) + (vecb xx hati) + ( veca xx hatj) . (vecb xx hatj) + (veca xx hatk ) .(vecb xx hatk) is always equal to

For any vectors veca and vecb, (veca xx hati) + (vecb xx hati) + ( veca xx hatj) . (vecb xx hatj) + (veca xx hatk ) .(vecb xx hatk) is always equal to

If veca is any vector and hati,hatj and hatk are unit vectors along the x,y and z directions then hatixx(vecaxxhati)+hatjxx(vecaxxhatj)+hatkxx(vecaxxveck)= (A) veca (B) -veca (C) 2veca (D) 0

If veca is any non-zero vector, then (veca.hati)hati+(veca.hatj)hatj+(veca.veck)hatk is equal to …….

If hati xx[(veca-hatj)xxhati]+hatjxx[(veca-hatk)xxhatj]+veckxx[(veca-veci)xxhatk]=0 , then find vector veca .

If hati xx [ (veca-hatj) xxhati]+ hatj xx [(veca - hatk)xx hatj] +hatk xx [(veca-hati) xx hatk]=0 and veca=xhati+y hatj+z hatk , then :

For any vector veca the value of (vecaxxhati)^2+(vecaxxhatj)^2+(vecaxxhatk)^2 is equal to

If veca,vecb are non-collinear vectors, then [(veca,vecb,hati)]hati+[(veca,vecb,hatj)]hatj+[(veca,vecb,hatk)]hatk=