Home
Class 12
MATHS
Let vecu= hati + hatj , vecv = hati -hat...

Let `vecu= hati + hatj , vecv = hati -hatj and vecw =hati + 2hatj + 3 hatk` If ` hatn` isa unit vector such that `vecu .hatn=0 and vecv .hatn =0 , " then " |vecw.hatn|` is equal to

A

3

B

0

C

1

D

2

Text Solution

Verified by Experts

The correct Answer is:
A

we have,
` vecu.hatn and vecv.hatn=0`
` hatn bot vecu and hatn bot vecv Rightarrow hatn = +- (vecu xx vecv)/(|vecu xx vecv|)`
Now, ` vecu xx vecv = (hati + hatj ) xx ( hati -hatj) = -2 hatk`
` hatn = +- hatk`
Hence ` |vecw hatn| = |(hati +2hatj =3hatk). ( +- hatk) =3`
Promotional Banner

Topper's Solved these Questions

  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos

Similar Questions

Explore conceptually related problems

Let vecu= hati + hatj , vecv = hati -hatja and hati -hatj and vecw =hati + 2hatj + 3 hatk If hatn isa unit vector such that vecu .hatn=0 and vecn .hatn =0 , " then " |vecw.hatn| is equal to

Let vecu=hati+hatj,vecv=hati-hatj and vecw=hati+2hatj+3hatk . If hatn is a unit vector such that vecu.hatn=0 and vecv.hatn=0, |vecw.hatn| is equal to (A) 0 (B) 1 (C) 2 (D) 3

Let vec(U)=hati+hatj,vecV=hati-hatjand vec(W)=3hati+5hatj+3hatk. If hat(n) is a unit vector such that vec(U) . hat(n) =0 and vec(V) . hat(n) =0 , then |vecW.hatn| is equal to

If veca=hati+hatj+hatk, vecb=2hati-hatj+3hatk and vecc=hati-2hatj+hatk find a unit vector parallel to ther vector 2veca-vecb+3c .

Let veca=hati-hatj,vecb=hati+hatj+hatk and vecc be a vector such that vecaxxvecc+vecb=vec0 and veca.vecc=4 , then |vecc|^(2) is equal to:

Given that vecu = hati + 2hatj + 3hatk , vecv = 2hati + hatk + 4hatk , vecw = hati + 3hatj + 3hatk and (vecu.vecR - 15) hati + (vecc. vecR - 30) hatj + (vecw . vec- 20) veck = vec0 . Then find the greatest integer less than or equal to |vecR| .

Let veca=hati + hatj +hatk,vecb=hati- hatj + hatk and vecc= hati-hatj - hatk be three vectors. A vectors vecv in the plane of veca and vecb , whose projection on vecc is 1/sqrt3 is given by

Let veca=hati+2hatj+3hati, vecb=hati-hatj+2hatk and vecc=(x-2)hati-(x-3)hatj-hatk . If vecc lies in the plane of veca and vecb , then (1)/(x) is equal to

Consider three vectors vecp=hati+hatj+hatk,vecq=2hati+4hatj-hatk and vecr=hati+hatj+3hatk and let vecs be a unit vector, then vecp,vecq and vecr are

Let vecu=u_(1)hati +u_(3)hatk be a unit vector in xz-plane and vecq = 1/sqrt6 ( hati + hatj + 2hatk) . If there exists a vector vecc in such that |vecu xx vecc|=1 and vecq . (vecu xx vecc) =1 .Then