Home
Class 12
MATHS
A unit vector perpendicular to both ha...

A unit vector perpendicular to both ` hati + hatj and hatj + hatk` is

A

`hati -hatj +hatk`

B

` hati +hatj + hatk`

C

` ( hati +hatj +hatk)/(sqrt3)`

D

` (hati -hatj +hatk)/( sqrt3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find a unit vector that is perpendicular to both vectors \( \hat{i} + \hat{j} \) and \( \hat{j} + \hat{k} \), we can follow these steps: ### Step 1: Define the Vectors Let: - \( \mathbf{a} = \hat{i} + \hat{j} \) - \( \mathbf{b} = \hat{j} + \hat{k} \) ### Step 2: Compute the Cross Product The unit vector perpendicular to both vectors \( \mathbf{a} \) and \( \mathbf{b} \) can be found using the cross product: \[ \mathbf{a} \times \mathbf{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix} \] ### Step 3: Evaluate the Determinant Calculating the determinant: \[ \mathbf{a} \times \mathbf{b} = \hat{i} \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} \] Calculating each of these 2x2 determinants: - For \( \hat{i} \): \( 1 \cdot 1 - 0 \cdot 1 = 1 \) - For \( \hat{j} \): \( 1 \cdot 1 - 0 \cdot 0 = 1 \) - For \( \hat{k} \): \( 1 \cdot 1 - 1 \cdot 0 = 1 \) Thus, we have: \[ \mathbf{a} \times \mathbf{b} = \hat{i} - \hat{j} + \hat{k} \] ### Step 4: Calculate the Magnitude of the Cross Product Now, we find the magnitude of \( \mathbf{a} \times \mathbf{b} \): \[ |\mathbf{a} \times \mathbf{b}| = \sqrt{(1)^2 + (-1)^2 + (1)^2} = \sqrt{1 + 1 + 1} = \sqrt{3} \] ### Step 5: Find the Unit Vector The unit vector perpendicular to both \( \mathbf{a} \) and \( \mathbf{b} \) is given by: \[ \mathbf{u} = \frac{\mathbf{a} \times \mathbf{b}}{|\mathbf{a} \times \mathbf{b}|} = \frac{\hat{i} - \hat{j} + \hat{k}}{\sqrt{3}} \] Thus, the unit vector perpendicular to both vectors is: \[ \mathbf{u} = \frac{1}{\sqrt{3}} \hat{i} - \frac{1}{\sqrt{3}} \hat{j} + \frac{1}{\sqrt{3}} \hat{k} \] ### Final Answer The unit vector perpendicular to both \( \hat{i} + \hat{j} \) and \( \hat{j} + \hat{k} \) is: \[ \mathbf{u} = \frac{1}{\sqrt{3}} \hat{i} - \frac{1}{\sqrt{3}} \hat{j} + \frac{1}{\sqrt{3}} \hat{k} \] ---

To find a unit vector that is perpendicular to both vectors \( \hat{i} + \hat{j} \) and \( \hat{j} + \hat{k} \), we can follow these steps: ### Step 1: Define the Vectors Let: - \( \mathbf{a} = \hat{i} + \hat{j} \) - \( \mathbf{b} = \hat{j} + \hat{k} \) ### Step 2: Compute the Cross Product ...
Promotional Banner

Topper's Solved these Questions

  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos

Similar Questions

Explore conceptually related problems

A vector perpendicular to both the vector 2hati -3hatj and 3hati - 2hatj is

The unit vector perpendicular to the vectors hati-hatj and hati +hatj forming a right handed system is

Find a unit vector perpendicular to the vector 4hati + 3hatj + hatk and 2hati-hatj+2hatk Determine the sine angle between these two vectors.

Find a unit vector perpendicular to both the vectors hati-2hatj+hatk and hati+2hatj+hatk .

Find a unit vector perpendicular to both the vectors (2hati+3hatj+hatk) and (hati-hatj+2hatk) .

Find a unit vector perpendicular to both the vectors 2hati+3hatj+hatk) and (hati-hatj+2hatk) .

Find a unit vector perpendicular to both the vectors. vecA = 3hati + hatj + 2hatk and vecB = 2hati - 2hatj + 4hatk .

The unit vector perpendicular to the vectors 6hati+2hatj+3hatk and 3hati-6hatj-2hatk , is

Find the unit vector perpendicular to the two vectors hati+2hatj-hatk and 2hati+3hatj+hatk .

The number of vectors of units length perpendicular to both the vectors hati +2hatj - hatk and 2hati + 4hatj -2hatk is