Home
Class 12
MATHS
Let veca =2hati +hatj -2hatk and vecb = ...

Let `veca =2hati +hatj -2hatk and vecb = hati +hatj . " Let " vecc` be vector such that ` |vecc -veca|=3, |(veca xx vecb) xx vecc|=3` and the angle between `vecc and veca xx vecb " be " 30^(@)` Then , ` veca . Vecc` is equal to

A

`25/8`

B

2

C

5

D

`1/8`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the given conditions and use vector operations accordingly. ### Step 1: Define the vectors Given: \[ \vec{a} = 2\hat{i} + \hat{j} - 2\hat{k} \] \[ \vec{b} = \hat{i} + \hat{j} \] ### Step 2: Calculate \(\vec{a} \times \vec{b}\) To find \(\vec{a} \times \vec{b}\), we will use the determinant method: \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & -2 \\ 1 & 1 & 0 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} 1 & -2 \\ 1 & 0 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & -2 \\ 1 & 0 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} \] \[ = \hat{i} (0 + 2) - \hat{j} (0 + 2) + \hat{k} (2 - 1) \] \[ = 2\hat{i} - 2\hat{j} + 1\hat{k} \] Thus, \[ \vec{a} \times \vec{b} = 2\hat{i} - 2\hat{j} + \hat{k} \] ### Step 3: Calculate the magnitude of \(\vec{a} \times \vec{b}\) \[ |\vec{a} \times \vec{b}| = \sqrt{(2)^2 + (-2)^2 + (1)^2} = \sqrt{4 + 4 + 1} = \sqrt{9} = 3 \] ### Step 4: Use the given conditions We know: 1. \(|\vec{c} - \vec{a}| = 3\) 2. \(|(\vec{a} \times \vec{b}) \times \vec{c}| = 3\) 3. The angle between \(\vec{c}\) and \(\vec{a} \times \vec{b}\) is \(30^\circ\). Using the formula for the magnitude of a cross product: \[ |(\vec{a} \times \vec{b}) \times \vec{c}| = |\vec{a} \times \vec{b}| |\vec{c}| \sin(30^\circ) \] Since \(\sin(30^\circ) = \frac{1}{2}\): \[ 3 = 3 |\vec{c}| \cdot \frac{1}{2} \] \[ 3 = \frac{3}{2} |\vec{c}| \] Thus, \[ |\vec{c}| = 2 \] ### Step 5: Use the condition \(|\vec{c} - \vec{a}| = 3\) Using the equation: \[ |\vec{c} - \vec{a}|^2 = 3^2 \] \[ |\vec{c}|^2 + |\vec{a}|^2 - 2 \vec{a} \cdot \vec{c} = 9 \] Substituting the magnitudes: \[ 2^2 + |\vec{a}|^2 - 2 \vec{a} \cdot \vec{c} = 9 \] Calculating \(|\vec{a}|\): \[ |\vec{a}| = \sqrt{(2)^2 + (1)^2 + (-2)^2} = \sqrt{4 + 1 + 4} = \sqrt{9} = 3 \] Substituting: \[ 4 + 9 - 2 \vec{a} \cdot \vec{c} = 9 \] \[ 13 - 2 \vec{a} \cdot \vec{c} = 9 \] \[ -2 \vec{a} \cdot \vec{c} = 9 - 13 \] \[ -2 \vec{a} \cdot \vec{c} = -4 \] Thus, \[ \vec{a} \cdot \vec{c} = 2 \] ### Final Result \[ \vec{a} \cdot \vec{c} = 2 \]

To solve the problem step by step, we will follow the given conditions and use vector operations accordingly. ### Step 1: Define the vectors Given: \[ \vec{a} = 2\hat{i} + \hat{j} - 2\hat{k} \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos

Similar Questions

Explore conceptually related problems

Let veca=2hati+hatj-2hatk and vecb=hati+hatj . Let vecc be a vector such that |vecc-veca|=3,|(vecaxxvecb)xxvecc| = 3 and the angle between vecc and veca xx vecb is 30^@ Find veca.vecc

Let veca = 2hati + hatj + hatk, and vecb = hati+ hatj if c is a vector such that veca .vecc = |vecc|, |vecc -veca| = 2sqrt2 and the angle between veca xx vecb and vec is 30^(@) , then |(veca xx vecb)|xx vecc| is equal to

If veca=hati+hatj + hatk and vecb = hati - 2 hatj+hatk then find the vector vecc such that veca.vecc =2 and veca xx vecc=vecb .

Let veca = hati + hatj +hatjk, vecc =hatj - hatk and a vector vecb be such that veca xx vecb = vecc and veca.vecb=3 . Then |vecb| equals:

If veca=hati+hatj+hatk and vecb=hatj-hatk find a vector vecc such that vecaxxvecc=vecb and veca.vecc=3 .

veca=2hati+hatj+2hatk, vecb=hati-hatj+hatk and non zero vector vecc are such that (veca xx vecb) xx vecc = veca xx (vecb xx vecc) . Then vector vecc may be given as

Let vecA, vecB and vecC be unit vectors such that vecA.vecB = vecA.vecC=0 and the angle between vecB and vecC " be" pi//3 . Then vecA = +- 2(vecB xx vecC) .

Let veca=hati-2hatj+hatkand vecb=hati-hatj+hatk be two vectors. If vecc is a vector such that vecbxxvecc=vecbxxveca and vecc*veca=0, theat vecc*vecb is equal to:

Let veca=2hati-hatj+3hatk, vecb=hati+hatj-4hatk and non - zero vector vecc are such that (veca xx vecb)xx vecc =veca xx(vecb xx vecc) , then vector vecc may be

Three vectors veca,vecb,vecc are such that veca xx vecb=4(veca xx vecc) and |veca|=|vecb|=1 and |vecc|=1/4 . If the angle between vecb and vecc is pi/3 then vecb is