Home
Class 12
MATHS
Let veca,vecb,vecc be the position vecto...

Let `veca,vecb,vecc` be the position vectors of three vertices A,B,C of a triangle respectively. Then the area fo the triangle is

A

` 1/2 |veca xx vecb +vecb xx vecc +vecc xx veca|`

B

`1/2|veca xx vecb|`

C

` 1/2|vecb xx vecc|`

D

` 1/2 |vecc xx veca|`

Text Solution

Verified by Experts

The correct Answer is:
A

we have,
Area of ` triangleABC = 1/2|vec(AB) xx vec(AC)|`
Now, ` vec(AB) xx vec(AC) = (vecb -veca) xx (vecc -veca)`
` Rightarrow vec(AB) xx vec(AC) = vecb xx vecc -vecb xx veca -veca xx vecc +veca xx veca`
` Rightarrow vec(AB) xx vec(AC) = vecb xx vecc + veca xx vecb +vecc xx veca +vec0`
` Rightarrow vec(AB) xx vec(AC) =veca xx vecb +vecb xx vecc + vecc xx veca`
Area of `Triangle ABC = 1/2 |vec(AB) xx vec(AC)|`
` Rightarrow " Area of " triangle ABC = 1/2 |veca xx vecb +vecb xx vecc + vecc xx veca|`
Promotional Banner

Topper's Solved these Questions

  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos

Similar Questions

Explore conceptually related problems

If veca , vecb, vecc are the position vectors of the vertices. A,B,C of a triangle ABC. Then the area of triangle ABC is

If veca , vecb , vecc are position vectors of the vertices A, B, C of a triangle ABC, show that the area of the triangle ABC is 1/2 ​ [ veca × vecb + vecb × vecc + vecc × veca ] . Also deduce the condition for collinearity of the points A, B and C.

Let the vectors veca,vecb,vecc be the position vectors of the vertices P,Q,R respectively of a triangle. Which of the following represents the area of the triangle? (A) 1/2|vecaxxvecb| (B) 1/2|vecbxxvecc| (C) 1/2 |veccxxveca| (D) 1/2|vecaxxvecb+vecbxxvecc+veccxxveca|

veca,vecb,vecc are the position vectors of vertices A, B, C respectively of a paralleloram, ABCD, ifnd the position vector of D.

If veca, vecb and vecc are the position vectors of the vertices A,B and C. respectively , of triangleABC . Prove that the perpendicualar distance of the vertex A from the base BC of the triangle ABC is (|vecaxxvecb+vecbxxvecc+veccxxveca|)/(|vecc-vecb|)

In a DeltaABC , the sides BC, CA and AB are consecutive positive integers in increasing order. Let veca, vecb and vecc are position vectors of the vertices A, B and C respectively. If (vecc-veca).(vecb-vecc)=0 , then the value of |veca xx vecb+vecbxx vecc+vecc xxveca| is equal to

Let veca, vecb,vecc be unit vectors, equally inclined to each other at an angle theta, (pi/3 lt theta lt pi/2) . If these are the poisitions vector of the vertices of a trinalge and vecg is the position vector of the centroid of the triangle, then:

If veca, vecb, vecc, vecd are the position vectors of points A, B, C and D , respectively referred to the same origin O such that no three of these points are collinear and veca+vecc=vecb+vecd , then prove that quadrilateral ABCD is a parallelogram.

If veca+2vecb+3vecc, 2veca+8vecb+3vecc, 2veca+5vecb-vecc and veca-vecb-vecc be the positions vectors A,B,C and D respectively, prove that vec(AB) and vec(CD) are parallel. Is ABCD a parallelogram?

The position vectors of the vertices A, B and C of a triangle are three unit vectors veca, vecb and vecc respectively. A vector vecd is such that vecd.hata =vecd. Hatb=vecd.hatc and vecd= lambda (hatb + hatc) . Then triangle ABC is