Home
Class 12
MATHS
The perpendicular distance of the point ...

The perpendicular distance of the point `vecc` from the joining ` veca and vecb` is

A

`(|vecbxx vecc +vecc xx veca +veca xx vecb|)/(|vecb -veca|)`

B

`(|vecaxx vecb +vecb xx vecc +vecc xx veca|)/(|vecb -veca|)`

C

` (|veca xx vecb + vecb xx vecc + vecc xx veca|)/( |veca - veca|)`

D

` 1/2 (|veca xx vecb + vecb xx vecc + vecc xx veca|)/ (|vecb -veca|) `

Text Solution

AI Generated Solution

The correct Answer is:
To find the perpendicular distance of the point \( \vec{C} \) from the line joining \( \vec{A} \) and \( \vec{B} \), we can follow these steps: ### Step 1: Define the Position Vectors Let \( \vec{A}, \vec{B}, \vec{C} \) be the position vectors of points A, B, and C respectively. ### Step 2: Identify the Line Segment The line segment joining points A and B can be represented by the vector \( \vec{AB} = \vec{B} - \vec{A} \). ### Step 3: Determine the Perpendicular from C to AB Let \( M \) be the foot of the perpendicular dropped from point C to the line AB. The length of this perpendicular, \( CM \), represents the distance we want to find. ### Step 4: Use the Area of Triangle Formula The area of triangle ABC can be expressed in terms of the base \( AB \) and height \( CM \): \[ \text{Area} = \frac{1}{2} \times |\vec{AB}| \times |CM| \] We can also express the area using the cross product: \[ \text{Area} = \frac{1}{2} |\vec{A} \times \vec{B}| \] ### Step 5: Relate the Two Area Expressions Setting the two area expressions equal gives: \[ \frac{1}{2} |\vec{AB}| \times |CM| = \frac{1}{2} |\vec{A} \times \vec{B}| \] Cancelling \( \frac{1}{2} \) from both sides, we have: \[ |\vec{AB}| \times |CM| = |\vec{A} \times \vec{B}| \] ### Step 6: Solve for CM Rearranging the equation to solve for \( |CM| \): \[ |CM| = \frac{|\vec{A} \times \vec{B}|}{|\vec{AB}|} \] ### Step 7: Substitute for \( \vec{AB} \) Substituting \( \vec{AB} = \vec{B} - \vec{A} \): \[ |CM| = \frac{|\vec{A} \times \vec{B}|}{|\vec{B} - \vec{A}|} \] ### Final Result Thus, the perpendicular distance of point \( \vec{C} \) from the line joining \( \vec{A} \) and \( \vec{B} \) is: \[ |CM| = \frac{|\vec{A} \times \vec{B}|}{|\vec{B} - \vec{A}|} \] ---

To find the perpendicular distance of the point \( \vec{C} \) from the line joining \( \vec{A} \) and \( \vec{B} \), we can follow these steps: ### Step 1: Define the Position Vectors Let \( \vec{A}, \vec{B}, \vec{C} \) be the position vectors of points A, B, and C respectively. ### Step 2: Identify the Line Segment The line segment joining points A and B can be represented by the vector \( \vec{AB} = \vec{B} - \vec{A} \). ...
Promotional Banner

Topper's Solved these Questions

  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos

Similar Questions

Explore conceptually related problems

Show that the perpendicular distance of any point veca from the line vecr=vecb+t vecc is (|(vecb-veca)xxvecc)|/(|vecc|)

Prove that the perpendiculasr distanceof as point with position vector veca from the plane thorugh three points with position vectors vecb,vecc, vecd is ([veca vecc vecd]+[veca vecd vecb]+[veca vecb vecc]-[vecb vecc vecd])/(|vecbxxvecc+veccxxvecd+vecdxvecb|)

If veca and vecb be two non collinear vectors such that veca=vecc+vecd , where vecc is parallel to vecb and vecd is perpendicular to vecb obtain expression for vecc and vecd in terms of veca and vecb as: vecd= veca- ((veca.vecb)vecb)/b^2,vecc= ((veca.vecb)vecb)/b^2

The length of the perpendicular from the origin to the plane passing through the points veca and containing the line vecr = vecb + lambda vecc is

A line l is passing through the point vecb and is parallel to vector vecc . Determine the distance of point A( veca) from the line l in from |vecb-veca+((veca-vecb)vecc)/(|vecc|^(2))vecc|or (|(vecb-veca)xxvecc|)/(|vecc|)

If veca, vecb,vecc are unit vectors such that veca is perpendicular to the plane of vecb, vecc and the angle between vecb,vecc is pi/3 , then |veca+vecb+vecc|=

If |veca|=5, |vecb|=3, |vecc|=4 and veca is perpendicular to vecb and vecc such that angle between vecb and vecc is (5pi)/6 , then the volume of the parallelopiped having veca, vecb and vecc as three coterminous edges is

Let veca,vecb and vecc are three vectors such that |veca|=3, |vecb|=3, |vecc|=2, |veca+vecb+vecc|=4 and veca is perpendicular to vecb,vecc makes angle theta and phi with veca and vecb respectively, then cos theta+cos theta=

Given vec(a) is perpendicular to vecb+vecc , vecb is perpendicular to vecc+veca and vecc is perpendicular to veca+vecb . If |veca|=1, |vecb|=2, |vecc|=3 , find |veca+vecb+vecc|

If veca , vecb and vecc are non- coplanar vectors and veca xx vecc is perpendicular to veca xx (vecb xx vecc) , then the value of [ veca xx ( vecb xx vecc)] xx vecc is equal to