Home
Class 12
MATHS
Let PQR be a triangle . Let veca=overlin...

Let `PQR` be a triangle . Let `veca=overline(QR),vecb = overline(RP) and vecc= overline(PQ).if |veca|=12, |vecb|=4sqrt3and vecb.vecc= 24` then which of the following is (are) true ?

A

`1/2|vecc|^(2) -|veca| =12`

B

`1/2|vecc|^(2) + |veca| =30`

C

` |veca xx vecb + vecc xx veca| = 48sqrt3`

D

`veca.vecb= -72`

Text Solution

Verified by Experts

The correct Answer is:
A, C, D

`veca= vec(QR) ,vecb = vec(RP) and vecc= vec(PQ)`
` Rightarrow veca + vecb + vecc = vec(QR) + vec(RP) + vec(PQ)`
` Rightarrow veca + vecb + vecc = vec(OQ) `
` Rightarrow veca + vecb + vecc= vec0`
` Rightarrow vecb + vecc = -veca`
` Rightarrow vecb + vecc = |-veca|`
` |vecb + vecc|^(2) =|veca|^(2)`
` |vecb|^(2) +|vecc|^(2) + 2(vecb .vecc) = |veca|^(2) `
` 48 + |vecc|^(2) + 48 = 144 `
` |vecc| = 4sqrt3`
` 1/2 |vecc|^(2) - |veca| = 24 -12 =12 and 1/2 |vecc|^(2) + | veca| = 24 + 12 =36`
So, option (a) is true and option (b) is not true. Again.
` veca + vecb + vecc= vec0`
` Rightarrow |veca + vecb| = | -vecc|`
` Rightarrow |veca + vecb|^(2) +2 (veca.vecb) = |vecc|^(2)`
` Rightarrow 144 + 48+2 (veca .vecb) = 48`
` Rightarrow veca.vecb = -72`
So, option (d) is true.
Again
` veca + vecb + vecc= vec0`
` Rightarrow veca xx ( veca + vecb + vecc) = veca xx vec0`
` Rightarrow veca xx veca + veca xx vecb + veca xx vecc= vec0`
` Rightarrow veca xx vecb = vecc xx veca `
` therefore |veca xx vecb + vecc xx veca| = |2 (veca xx vecb)| = 2|veca xx vecb|`
` 2 sqrt(|veca|^(2) |vecb|^(2) -(veca -vecb)^(2) )`
` 2 sqrt(144xx 48 -(-72) ^(2)) = 48sqrt3`
So, option (c) is correct
Hence, option (a),(c) and (d) are ture.
Promotional Banner

Topper's Solved these Questions

  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos

Similar Questions

Explore conceptually related problems

Let vecC=vecA+vecB

Let veca,vecb,vecc be unit vectors such that veca+vecb+vecc=vec0 . Which of the following is correct?

Let veca and vecb are vectors such that |veca|=2, |vecb|=3 and veca. vecb=4 . If vecc=(3veca xx vecb)-4vecb , then |vecc| is equal to

Let veca , vecb,vecc be three vectors such that veca bot ( vecb + vecc), vecb bot ( vecc + veca) and vecc bot ( veca + vecb) , " if " |veca| =1 , |vecb| =2 , |vecc| =3 , " then " | veca + vecb + vecc| is,

Let veca vecb and vecc be pairwise mutually perpendicular vectors, such that |veca|=1, |vecb|=2, |vecc| = 2 , the find the length of veca +vecb + vecc .

Let veca vecb and vecc be pairwise mutually perpendicular vectors, such that |veca|=1, |vecb|=2, |vecc| = 2 , the find the length of veca +vecb + vecc .

If veca, vecb and vecc are such that [veca \ vecb \ vecc] =1, vecc= lambda (veca xx vecb) , angle between vecc and vecb is 2pi//3 , |veca|=sqrt2, |vecb|=sqrt3 and |vecc|=1/sqrt3 then the angle between veca and vecb is

Let veclamda=veca times (vecb +vecc), vecmu=vecb times (vecc+veca) and vecv=vecc times (veca+vecb) , Then

If |veca|=1,|vecb|=2,|vecc|=3and veca+vecb+vecc=0 the show that veca.vecb+vecb.vecc+vecc.veca=- 7

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then: