Home
Class 12
MATHS
Let veca -2hati + hatj +hatk , vecb =hat...

Let `veca -2hati + hatj +hatk , vecb =hati + 2hatj +hatk and vecc = 2hati -3hatj +4hatk . A " vector " vecr " satisfying " vecr xx vecb = vecc xx vecb and vecr . Veca =0` is

A

` -2hati =2hatj +2hatk`

B

` -2hati +hatj +3hatk`

C

` 3hati+2hatj +4hatk`

D

` hati - 5hatj +3hatk`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find a vector \(\vec{r}\) that satisfies the conditions \(\vec{r} \times \vec{b} = \vec{c} \times \vec{b}\) and \(\vec{r} \cdot \vec{a} = 0\). ### Step 1: Write down the given vectors We have: \[ \vec{a} = -2\hat{i} + \hat{j} + \hat{k} \] \[ \vec{b} = \hat{i} + 2\hat{j} + \hat{k} \] \[ \vec{c} = 2\hat{i} - 3\hat{j} + 4\hat{k} \] ### Step 2: Calculate \(\vec{c} \times \vec{b}\) To find \(\vec{c} \times \vec{b}\), we can use the determinant of a matrix formed by the unit vectors and the components of \(\vec{c}\) and \(\vec{b}\): \[ \vec{c} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -3 & 4 \\ 1 & 2 & 1 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} -3 & 4 \\ 2 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 4 \\ 1 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & -3 \\ 1 & 2 \end{vmatrix} \] Calculating each of these 2x2 determinants: \[ = \hat{i}((-3)(1) - (4)(2)) - \hat{j}((2)(1) - (4)(1)) + \hat{k}((2)(2) - (-3)(1)) \] \[ = \hat{i}(-3 - 8) - \hat{j}(2 - 4) + \hat{k}(4 + 3) \] \[ = -11\hat{i} + 2\hat{j} + 7\hat{k} \] ### Step 3: Set up the equation \(\vec{r} \times \vec{b} = \vec{c} \times \vec{b}\) Now we have: \[ \vec{r} \times \vec{b} = -11\hat{i} + 2\hat{j} + 7\hat{k} \] ### Step 4: Use the condition \(\vec{r} \cdot \vec{a} = 0\) This means that \(\vec{r}\) is perpendicular to \(\vec{a}\). If we let: \[ \vec{r} = x\hat{i} + y\hat{j} + z\hat{k} \] Then: \[ \vec{r} \cdot \vec{a} = (x)(-2) + (y)(1) + (z)(1) = 0 \] This simplifies to: \[ -2x + y + z = 0 \quad \text{(Equation 1)} \] ### Step 5: Solve for \(\vec{r}\) We can express \(z\) in terms of \(x\) and \(y\) using Equation 1: \[ z = 2x - y \] ### Step 6: Substitute \(\vec{r}\) into the cross product equation We need to find \(\vec{r} \times \vec{b}\): \[ \vec{r} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ x & y & z \\ 1 & 2 & 1 \end{vmatrix} \] Calculating this determinant: \[ = \hat{i} \begin{vmatrix} y & z \\ 2 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} x & z \\ 1 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} x & y \\ 1 & 2 \end{vmatrix} \] Calculating each of these 2x2 determinants gives us: \[ = \hat{i}(y \cdot 1 - z \cdot 2) - \hat{j}(x \cdot 1 - z \cdot 1) + \hat{k}(x \cdot 2 - y \cdot 1) \] Substituting \(z = 2x - y\): \[ = \hat{i}(y - 2(2x - y)) - \hat{j}(x - (2x - y)) + \hat{k}(2x - y) \] Simplifying gives: \[ = \hat{i}(y - 4x + 2y) - \hat{j}(-x + 2x - y) + \hat{k}(2x - y) \] \[ = \hat{i}(3y - 4x) + \hat{j}(x - y) + \hat{k}(2x - y) \] ### Step 7: Set the components equal to those from \(\vec{c} \times \vec{b}\) We have: \[ 3y - 4x = -11 \quad \text{(Equation 2)} \] \[ x - y = 2 \quad \text{(Equation 3)} \] \[ 2x - y = 7 \quad \text{(Equation 4)} \] ### Step 8: Solve the system of equations From Equation 3: \[ y = x - 2 \] Substituting \(y\) into Equation 4: \[ 2x - (x - 2) = 7 \] \[ 2x - x + 2 = 7 \] \[ x + 2 = 7 \implies x = 5 \] Then substituting back to find \(y\): \[ y = 5 - 2 = 3 \] And substituting \(x\) and \(y\) back into Equation 1 to find \(z\): \[ z = 2(5) - 3 = 10 - 3 = 7 \] ### Final Answer Thus, the vector \(\vec{r}\) is: \[ \vec{r} = 5\hat{i} + 3\hat{j} + 7\hat{k} \]

To solve the problem step by step, we need to find a vector \(\vec{r}\) that satisfies the conditions \(\vec{r} \times \vec{b} = \vec{c} \times \vec{b}\) and \(\vec{r} \cdot \vec{a} = 0\). ### Step 1: Write down the given vectors We have: \[ \vec{a} = -2\hat{i} + \hat{j} + \hat{k} \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos

Similar Questions

Explore conceptually related problems

Let veca=-hati-hatk,vecb =-hati + hatj and vecc = i + 2hatj + 3hatk be three given vectors. If vecr is a vector such that vecr xx vecb = vecc xx vecb and vecr.veca =0 then find the value of vecr .vecb .

If veca = 2hati -3hatj-1hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca =hati + hatj-hatk, vecb = - hati + 2hatj + 2hatk and vecc = - hati +2hatj -hatk , then a unit vector normal to the vectors veca + vecb and vecb -vecc , is

Let veca =hatj-hatk and vecc =hati-hatj-hatk . Then the vector b satisfying veca xvecb+vecc =0 and veca.vecb = 3, is

Let veca= 2 hati + 3hatj - 6hatk, vecb = 2hati - 3hatj + 6hatk and vecc = -2 hati + 3hatj + 6hatk . Let veca_(1) be the projection of veca on vecb and veca_(2) be the projection of veca_(1) on vecc . Then veca_(1).vecb is equal to

Let veca= 2 hati + 3hatj - 6hatk, vecb = 2hati - 3hatj + 6hatk and vecc = -2 hati + 3hatj + 6hatk . Let veca_(1) be the projection of veca on vecb and veca_(2) be the projection of veca_(1) on vecc . Then veca_(2) is equal to

find vecA xx vecB if vecA = hati - 2 hatj + 4 hatk and vecB = 3 hati - hatj + 2hatk

Let veca=hati + hatj +hatk,vecb=hati- hatj + hatk and vecc= hati-hatj - hatk be three vectors. A vectors vecv in the plane of veca and vecb , whose projection on vecc is 1/sqrt3 is given by