Home
Class 12
MATHS
vectors veca and vecb are inclined at an...

vectors `veca and vecb` are inclined at an angle ` theta = 60^(@). " If " |veca|=1, |vecb| =2 , " then " [ (veca + 3vecb) xx ( 3 veca -vecb)] ^(2)` is equal to

A

225

B

275

C

325

D

300

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the same logical structure as presented in the video transcript. ### Step 1: Write the expression We start with the expression we need to evaluate: \[ [(\vec{a} + 3\vec{b}) \times (3\vec{a} - \vec{b})]^2 \] ### Step 2: Expand the cross product Using the distributive property of the cross product, we can expand the expression: \[ (\vec{a} + 3\vec{b}) \times (3\vec{a} - \vec{b}) = \vec{a} \times 3\vec{a} + \vec{a} \times (-\vec{b}) + 3\vec{b} \times 3\vec{a} + 3\vec{b} \times (-\vec{b}) \] This simplifies to: \[ = 3(\vec{a} \times \vec{a}) - \vec{a} \times \vec{b} + 9(\vec{b} \times \vec{a}) - 3(\vec{b} \times \vec{b}) \] ### Step 3: Simplify using properties of cross products Using the property that the cross product of any vector with itself is zero (\(\vec{a} \times \vec{a} = 0\) and \(\vec{b} \times \vec{b} = 0\)), we have: \[ = 0 - \vec{a} \times \vec{b} + 9(\vec{b} \times \vec{a}) + 0 \] Since \(\vec{b} \times \vec{a} = -(\vec{a} \times \vec{b})\), we can rewrite it as: \[ = -\vec{a} \times \vec{b} - 9(\vec{a} \times \vec{b}) = -10(\vec{a} \times \vec{b}) \] ### Step 4: Square the result Now we need to square the result: \[ [-10(\vec{a} \times \vec{b})]^2 = 100(\vec{a} \times \vec{b})^2 \] ### Step 5: Calculate \((\vec{a} \times \vec{b})^2\) The magnitude of the cross product \(\vec{a} \times \vec{b}\) can be calculated using the formula: \[ |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin(\theta) \] Given that \(|\vec{a}| = 1\), \(|\vec{b}| = 2\), and \(\theta = 60^\circ\), we have: \[ |\vec{a} \times \vec{b}| = 1 \cdot 2 \cdot \sin(60^\circ) = 2 \cdot \frac{\sqrt{3}}{2} = \sqrt{3} \] Thus, \[ (\vec{a} \times \vec{b})^2 = (\sqrt{3})^2 = 3 \] ### Step 6: Substitute back into the squared expression Now substituting back, we get: \[ 100(\vec{a} \times \vec{b})^2 = 100 \cdot 3 = 300 \] ### Final Answer Therefore, the value of the expression is: \[ \boxed{300} \]

To solve the problem step by step, we will follow the same logical structure as presented in the video transcript. ### Step 1: Write the expression We start with the expression we need to evaluate: \[ [(\vec{a} + 3\vec{b}) \times (3\vec{a} - \vec{b})]^2 \] ...
Promotional Banner

Topper's Solved these Questions

  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos

Similar Questions

Explore conceptually related problems

Let veca and vecb are two vectors inclined at an angle of 60^(@) , If |veca|=|vecb|=2 ,the the angle between veca and veca + vecb is

If veca and vecb are unit vectors inclined at an angle theta , then the value of |veca-vecb| is

If |veca|=|vecb| , then (veca+vecb).(veca-vecb) is equal to

Unit vectors veca and vecb ar perpendicular , and unit vector vecc is inclined at an angle theta to both veca and vecb . If alpha veca + beta vecb + gamma (veca xx vecb) then.

Let veca , vecb,vecc be three vectors such that veca bot ( vecb + vecc), vecb bot ( vecc + veca) and vecc bot ( veca + vecb) , " if " |veca| =1 , |vecb| =2 , |vecc| =3 , " then " | veca + vecb + vecc| is,

Prove that: |(veca+vecb)xx(veca-vecb)|=2ab if veca_|_vecb

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If vectors veca and vecb are non collinear then veca/(|veca|)+vecb/(|vecb|) is (A) a unit vector (B) in the plane of veca and vecb (C) equally inclined to veca and vecb (D) perpendicular to veca xx vecb

If veca and vecb are non - zero vectors such that |veca + vecb| = |veca - 2vecb| then

Let veca and vecb be unit vectors that are perpendicular to each other l. then [veca+ (veca xx vecb) vecb + (veca xx vecb) veca xx vecb] will always be equal to