Home
Class 12
MATHS
If veca , vecb are unit vectors such th...

If ` veca , vecb` are unit vectors such that the vector ` veca + 3vecb ` is peependicular to ` 7 veca - vecb and veca -4vecb` is prependicular to ` 7 veca -2vecb` then the angle between ` veca and vecb` is

A

` pi//6`

B

` pi//4`

C

` pi//3`

D

` pi//2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will use the properties of dot products and the fact that the vectors are unit vectors. ### Step 1: Set Up the Problem Given that \( \vec{a} \) and \( \vec{b} \) are unit vectors, we know: - \( |\vec{a}| = 1 \) - \( |\vec{b}| = 1 \) We have two conditions: 1. \( \vec{a} + 3\vec{b} \) is perpendicular to \( 7\vec{a} - 5\vec{b} \) 2. \( \vec{a} - 4\vec{b} \) is perpendicular to \( 7\vec{a} - 2\vec{b} \) ### Step 2: Use the Perpendicular Condition For two vectors \( \vec{u} \) and \( \vec{v} \) to be perpendicular, their dot product must equal zero: \[ \vec{u} \cdot \vec{v} = 0 \] #### Condition 1: Set \( \vec{u} = \vec{a} + 3\vec{b} \) and \( \vec{v} = 7\vec{a} - 5\vec{b} \): \[ (\vec{a} + 3\vec{b}) \cdot (7\vec{a} - 5\vec{b}) = 0 \] Expanding this: \[ \vec{a} \cdot (7\vec{a}) + 3\vec{b} \cdot (7\vec{a}) - 5\vec{a} \cdot \vec{b} - 15\vec{b} \cdot \vec{b} = 0 \] \[ 7|\vec{a}|^2 + 21(\vec{a} \cdot \vec{b}) - 5(\vec{a} \cdot \vec{b}) - 15|\vec{b}|^2 = 0 \] Since \( |\vec{a}|^2 = 1 \) and \( |\vec{b}|^2 = 1 \): \[ 7 + 16(\vec{a} \cdot \vec{b}) - 15 = 0 \] \[ 16(\vec{a} \cdot \vec{b}) = 8 \] \[ \vec{a} \cdot \vec{b} = \frac{1}{2} \] ### Step 3: Find the Angle from the Dot Product Using the dot product formula: \[ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta \] Substituting the values: \[ \frac{1}{2} = 1 \cdot 1 \cdot \cos \theta \] \[ \cos \theta = \frac{1}{2} \] This implies: \[ \theta = \frac{\pi}{3} \] ### Step 4: Verify with the Second Condition Now we check the second condition: Set \( \vec{u} = \vec{a} - 4\vec{b} \) and \( \vec{v} = 7\vec{a} - 2\vec{b} \): \[ (\vec{a} - 4\vec{b}) \cdot (7\vec{a} - 2\vec{b}) = 0 \] Expanding this: \[ \vec{a} \cdot (7\vec{a}) - 2\vec{a} \cdot \vec{b} - 28\vec{b} \cdot \vec{a} + 8\vec{b} \cdot \vec{b} = 0 \] \[ 7|\vec{a}|^2 - 30(\vec{a} \cdot \vec{b}) + 8|\vec{b}|^2 = 0 \] Substituting \( |\vec{a}|^2 = 1 \) and \( |\vec{b}|^2 = 1 \): \[ 7 - 30(\vec{a} \cdot \vec{b}) + 8 = 0 \] \[ 15 - 30(\vec{a} \cdot \vec{b}) = 0 \] \[ 30(\vec{a} \cdot \vec{b}) = 15 \] \[ \vec{a} \cdot \vec{b} = \frac{1}{2} \] This confirms our previous result. ### Final Answer Thus, the angle between \( \vec{a} \) and \( \vec{b} \) is: \[ \theta = \frac{\pi}{3} \] ---

To solve the problem step by step, we will use the properties of dot products and the fact that the vectors are unit vectors. ### Step 1: Set Up the Problem Given that \( \vec{a} \) and \( \vec{b} \) are unit vectors, we know: - \( |\vec{a}| = 1 \) - \( |\vec{b}| = 1 \) We have two conditions: ...
Promotional Banner

Topper's Solved these Questions

  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos

Similar Questions

Explore conceptually related problems

If veca * vecb = |veca xx vecb| , then this angle between veca and vecb is,

If veca and vecb are two unit vectors such that veca+2vecb and 5veca-4vecb are perpendicular to each other, then the angle between veca and vecb is

If |vecA xx vecB| = vecA.vecB then the angle between vecA and vecB is :

If |veca - vecb|=|veca| =|vecb|=1 , then the angle between veca and vecb , is

If | veca + vecb|=| veca - vecb| , then what is the angle between veca and vecb ?

If veca and vecb are non - zero vectors such that |veca + vecb| = |veca - 2vecb| then

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If |vecA + vecB| = |vecA - vecB| , then the angle between vecA and vecB will be

If |vecA + vecB| = |vecA - vecB| , then the angle between vecA and vecB will be

If veca, vecb are unit vectors such that |veca +vecb|=1 and |veca -vecb|=sqrt3 , then |3 veca+2vecb |=