Home
Class 12
MATHS
if G is the centroid of triangleABC su...

if G is the centroid of ` triangleABC` such that ` vec(GB) and vec(GC)` are inclined at on obtuse angle, then

A

` 5a^(2) gt b^(2) +c^(2)`

B

` 5c^(2) gt a^(2) + b^(2)`

C

`5b^(2) gt a^(2) + c^(2)`

D

none of these

Text Solution

AI Generated Solution

To solve the problem, we need to analyze the given conditions about the centroid \( G \) of triangle \( ABC \) and the vectors \( \vec{GB} \) and \( \vec{GC} \). ### Step-by-Step Solution: 1. **Understanding the Centroid**: The centroid \( G \) of triangle \( ABC \) is given by the formula: \[ \vec{G} = \frac{\vec{A} + \vec{B} + \vec{C}}{3} ...
Promotional Banner

Topper's Solved these Questions

  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos

Similar Questions

Explore conceptually related problems

If G is the centroid of a triangle A B C , prove that vec G A+ vec G B+ vec G C= vec0dot

If G is the centroid of a triangle A B C , prove that vec G A+ vec G B+ vec G C= vec0dot

If G is the centroid of /_\ABC, prove that vec(GA)+vec(GB)+vec(GC) =0. Further if G_1 bet eh centroid of another /_\PQR , show that vec(AP)+vec(BQ)+vec(CR)=3vec(GG_1)

If G is the centroid of a DeltaABC , then GA^(2)+GB^(2)+GC^(2) is equal to

If G is the centroid of triangle A B C ,t h e n vec G A+ vec G B+ vec G C is equal to a. vec0 b. 3 vec G A c. 3 vec G B d. 3 vec G C

Let G be the centroid of triangle \ A B Cdot If vec A B= vec a ,\ vec A C= vec b , then the bisector vec A G , in terms of vec a\ a n d\ vec b is 2/3( vec a+ vec b) b. 1/6( vec a+ vec b) c. 1/3( vec a+ vec b) d. 1/2( vec a+ vec b)1

If A,B and C are the vertices of a triangle with position vectors vec(a) , vec(b) and vec(c ) respectively and G is the centroid of Delta ABC , then vec( GA) + vec( GB ) + vec( GC ) is equal to

Let G be the centroid of Delta ABC , If vec(AB) = vec a , vec(AC) = vec b, then the vec(AG), in terms of vec a and vec b, is

If G be the centroid of a triangle ABC, prove that, AB^2 + BC^2 + CA^2 = 3(GA^2 + GB^2 + GC^2)

lf G be the centroid of a triangle ABC and P be any other point in the plane prove that PA^2+PB^2+PC^2=GA^2+GB^2+GC^2+3GP^2