Home
Class 12
MATHS
If a,b,c are the p^("th") , q^("th") and...

If a,b,c are the `p^("th") , q^("th") and r^("th") ` terms of G.P then the angle between the vector `vecu = (log a) hati + (log b)hatj + (log c) hatk and vecv -( q -r) hati + ( r -p) hati + ( r-p) hatj + ( p-q) hatk`, is

A

`pi/3`

B

`pi/6`

C

`pi`

D

` pi/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the angle between the vectors \( \vec{u} \) and \( \vec{v} \) given the terms of a geometric progression (G.P). ### Step-by-Step Solution: 1. **Define the terms of the G.P.**: Let the first term of the G.P. be \( A \) and the common ratio be \( R \). The terms can be expressed as: - \( a = A R^{p-1} \) (the \( p \)-th term) - \( b = A R^{q-1} \) (the \( q \)-th term) - \( c = A R^{r-1} \) (the \( r \)-th term) 2. **Express the vectors**: The vector \( \vec{u} \) is given by: \[ \vec{u} = \log a \hat{i} + \log b \hat{j} + \log c \hat{k} \] Substituting the values of \( a \), \( b \), and \( c \): \[ \vec{u} = \log(A R^{p-1}) \hat{i} + \log(A R^{q-1}) \hat{j} + \log(A R^{r-1}) \hat{k} \] Using the logarithmic property \( \log(xy) = \log x + \log y \): \[ \vec{u} = \left( \log A + (p-1) \log R \right) \hat{i} + \left( \log A + (q-1) \log R \right) \hat{j} + \left( \log A + (r-1) \log R \right) \hat{k} \] 3. **Simplify \( \vec{u} \)**: \[ \vec{u} = \log A \hat{i} + \log A \hat{j} + \log A \hat{k} + (p-1) \log R \hat{i} + (q-1) \log R \hat{j} + (r-1) \log R \hat{k} \] \[ \vec{u} = \log A \hat{i} + \log A \hat{j} + \log A \hat{k} + \log R \left( (p-1) \hat{i} + (q-1) \hat{j} + (r-1) \hat{k} \right) \] 4. **Define vector \( \vec{v} \)**: The vector \( \vec{v} \) is given as: \[ \vec{v} = (q - r) \hat{i} + (r - p) \hat{j} + (p - q) \hat{k} \] 5. **Calculate the dot product \( \vec{u} \cdot \vec{v} \)**: \[ \vec{u} \cdot \vec{v} = \left( \log A + (p-1) \log R \right)(q - r) + \left( \log A + (q-1) \log R \right)(r - p) + \left( \log A + (r-1) \log R \right)(p - q) \] 6. **Simplify the dot product**: Expanding the terms: \[ = \log A (q - r) + (p-1) \log R (q - r) + \log A (r - p) + (q-1) \log R (r - p) + \log A (p - q) + (r-1) \log R (p - q) \] Combine like terms: \[ = \log A \left( (q - r) + (r - p) + (p - q) \right) + \log R \left( (p-1)(q - r) + (q-1)(r - p) + (r-1)(p - q) \right) \] The first part simplifies to zero: \[ (q - r) + (r - p) + (p - q) = 0 \] The second part also simplifies to zero due to the cyclic nature of the terms. 7. **Conclusion**: Since \( \vec{u} \cdot \vec{v} = 0 \), the vectors \( \vec{u} \) and \( \vec{v} \) are orthogonal. Therefore, the angle \( \theta \) between them is: \[ \theta = 90^\circ \]

To solve the problem, we need to find the angle between the vectors \( \vec{u} \) and \( \vec{v} \) given the terms of a geometric progression (G.P). ### Step-by-Step Solution: 1. **Define the terms of the G.P.**: Let the first term of the G.P. be \( A \) and the common ratio be \( R \). The terms can be expressed as: - \( a = A R^{p-1} \) (the \( p \)-th term) - \( b = A R^{q-1} \) (the \( q \)-th term) ...
Promotional Banner

Topper's Solved these Questions

  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|12 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|63 Videos
  • SOLUTIONS OF TRIANGLES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|20 Videos

Similar Questions

Explore conceptually related problems

If p^(th), q^(th), r^(th) , terms of a G.P. are the positive numbers a, b, c respectively then angle between the vectors log a^3 hat i + log b^3 hatj + log c^3 hatk and (q - r)hati + (r - p)hatj + (p - q) hatk is: (a) pi/2 (b) pi/3 (c) 0 (d) sin^(-1)""(1)/(sqrt(p^2 + q^2 + r^2))

If a, b,c are the pth, qth, and rth terms of a HP, then the vectors vecu= hati/a + hatj/b + hatk/c and vecv = ( q -r) hati + ( r-p) hatj + ( p-q) hatk

If a gt 0, b gt 0, c gt0 are respectively the pth, qth, rth terms of a G.P., then the value of the determinant |(log a,p,1),(log b,q,1),(log c,r,1)| , is

If p^(th), q^(th) and r^(th) terms of G.P. are x,y,z respectively then write the value of x^(q-r) y^(r-p) z^(p-q).

If a,b,c are p^(th) , q^(th) and r^(th) term of an AP and GP both, then the product of the roots of equation a^b b^c c^a x^2 - abcx + a^c b^c c^a = 0 is equal to :

If the p^(t h) , q^(t h) and r^(t h) terms of a GP are a, b and c, respectively. Prove that a^(q-r)b^(r-p)c^(p-q)=1 .

If a, b, c are then p^(th),q^(th),r^(th) , terms of an HP and vec u=(q-r)hat i+(r-p)hat j+(p-q)hat k and vec v=hat i/a+hat j/b+hat k/c then

If a,b,c be respectively the p^(th),q^(th)andr^(th) terms of a H.P., then Delta=|{:(bc,ca,ab),(p,q,r),(1,1,1):}| equals

If the p^(t h) , q^(t h) and r^(t h) terms of a GP are a, b and c, respectively. Prove that a^(q-r)""b^(r-p)""c^(p-q)=1 .

The p^(t h),q^(t h) and r^(t h) terms of an A.P. are a, b, c, respectively. Show that (q-r)a+(r-p)b+(p-q)c=0 .