Home
Class 12
MATHS
If x(t) is a solution of ((1+t)dy)/(dx...

If `x(t)` is a solution of `((1+t)dy)/(dx)-t y=1` and `y(0)=-1` then `y(1)` is (a) `( b ) (c)-( d )1/( e )2( f ) (g) (h)` (i) (b) `( j ) (k) e+( l )1/( m )2( n ) (o) (p)` (q) (c) `( d ) (e) e-( f )1/( g )2( h ) (i) (j)` (k) (d) `( l ) (m) (n)1/( o )2( p ) (q) (r)` (s)

A

`-(1)/(2)`

B

`e+(1)/(2)`

C

`e-(1)/(2)`

D

`(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the differential equation given by \[ (1+t) \frac{dy}{dx} - ty = 1 \] with the initial condition \( y(0) = -1 \), we will follow these steps: ### Step 1: Rewrite the equation in standard form We can rewrite the equation as: \[ \frac{dy}{dx} - \frac{t}{1+t} y = \frac{1}{1+t} \] This is now in the standard form of a linear first-order differential equation: \[ \frac{dy}{dx} + P(t)y = Q(t) \] where \( P(t) = -\frac{t}{1+t} \) and \( Q(t) = \frac{1}{1+t} \). ### Step 2: Find the integrating factor The integrating factor \( \mu(t) \) is given by: \[ \mu(t) = e^{\int P(t) dt} = e^{\int -\frac{t}{1+t} dt} \] To compute this integral, we can use the substitution \( u = 1 + t \), which gives \( du = dt \) and \( t = u - 1 \). Thus, the integral becomes: \[ \int -\frac{t}{1+t} dt = \int -\frac{u-1}{u} du = \int -1 + \frac{1}{u} du = -u + \ln|u| + C = -(1+t) + \ln(1+t) \] So, the integrating factor is: \[ \mu(t) = e^{-(1+t) + \ln(1+t)} = \frac{1+t}{e^{1+t}} \] ### Step 3: Multiply through by the integrating factor Now we multiply the entire differential equation by the integrating factor: \[ \frac{1+t}{e^{1+t}} \frac{dy}{dx} - \frac{t(1+t)}{(1+t)e^{1+t}} y = \frac{(1+t)}{(1+t)e^{1+t}} \] This simplifies to: \[ \frac{1+t}{e^{1+t}} \frac{dy}{dx} - \frac{t}{e^{1+t}} y = \frac{1}{e^{1+t}} \] ### Step 4: Solve the equation The left-hand side can be rewritten as: \[ \frac{d}{dx} \left( y \frac{1+t}{e^{1+t}} \right) = \frac{1}{e^{1+t}} \] Integrating both sides with respect to \( t \): \[ y \frac{1+t}{e^{1+t}} = \int \frac{1}{e^{1+t}} dt \] The integral on the right can be computed as: \[ \int e^{-(1+t)} dt = -e^{-(1+t)} + C \] Thus, we have: \[ y \frac{1+t}{e^{1+t}} = -e^{-(1+t)} + C \] ### Step 5: Solve for \( y \) Now, solving for \( y \): \[ y = \frac{-e^{-(1+t)} + C}{\frac{1+t}{e^{1+t}}} = \frac{-e^{-(1+t)} + C}{\frac{1+t}{e^{1+t}}} \cdot \frac{e^{1+t}}{1+t} \] This simplifies to: \[ y = -1 + C \cdot e^{1+t} \] ### Step 6: Apply the initial condition Using the initial condition \( y(0) = -1 \): \[ -1 = -1 + C \cdot e^{1} \] This implies \( C = 0 \). Therefore, the solution simplifies to: \[ y = -1 \] ### Step 7: Find \( y(1) \) Finally, we need to find \( y(1) \): \[ y(1) = -1 \] ### Conclusion Thus, the final answer is: \[ \boxed{-1} \]

To solve the differential equation given by \[ (1+t) \frac{dy}{dx} - ty = 1 \] with the initial condition \( y(0) = -1 \), we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • DIFFERENTIAL EQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|74 Videos
  • DIFFERENTIAL EQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DERIVATIVE AS A RATE MEASURER

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|26 Videos
  • DIFFERENTIALS, ERRORS AND APPROXIMATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|17 Videos

Similar Questions

Explore conceptually related problems

A curve is such that the mid-point of the portion of the tangent intercepted between the point where the tangent is drawn and the point where the tangent meets the y-axis lies on the line y=xdot If the curve passes through (1,0), then the curve is (a) ( b ) (c)2y=( d ) x^(( e )2( f ))( g )-x (h) (i) (b) ( j ) (k) y=( l ) x^(( m )2( n ))( o )-x (p) (q) (c) ( d ) (e) y=x-( f ) x^(( g )2( h ))( i ) (j) (k) (d) ( l ) (m) y=2(( n ) (o) x-( p ) x^(( q )2( r ))( s ) (t))( u ) (v)

Orthogonal trajectories of family of the curve x^(2/3)+y^2/3=a^((2/3)) , where a is any arbitrary constant, is (a) ( b ) (c) (d) x^(( e ) (f) (g)2/( h )3( i ) (j) (k))( l )-( m ) y^(( n ) (o) (p)2/( q )3( r ) (s) (t))( u )=c (v) (w) (b) ( x ) (y) (z) x^(( a a ) (bb) (cc)4/( d d )3( e e ) (ff) (gg))( h h )-( i i ) y^(( j j ) (kk) (ll)4/( m m )3( n n ) (oo) (pp))( q q )=c (rr) (ss) (c) ( d ) (e) (f) x^(( g ) (h) (i)4/( j )3( k ) (l) (m))( n )+( o ) y^(( p ) (q) (r)4/( s )3( t ) (u) (v))( w )=c (x) (y) (d) ( z ) (aa) (bb) x^(( c c ) (dd) (ee)1/( f f )3( g g ) (hh) (ii))( j j )-( k k ) y^(( l l ) (mm) (nn)1/( o o )3( p p ) (qq) (rr))( s s )=c (tt) (uu)

The solution of differential equation (2y+x y^3)dx+(x+x^2y^2)dy=0 is (a) ( b ) (c) (d) x^(( e )2( f ))( g ) y+( h )(( i ) (j) x^(( k )3( l ))( m ) (n) y^(( o )3( p ))( q ))/( r )3( s ) (t)=c (u) (v) (b) ( w ) (x) x (y) y^(( z )2( a a ))( b b )+( c c )(( d d ) (ee) x^(( f f )3( g g ))( h h ) (ii) y^(( j j )3( k k ))( l l ))/( m m )3( n n ) (oo)=c (pp) (qq) (c) ( d ) (e) (f) x^(( g )2( h ))( i ) y+( j )(( k ) (l) x^(( m )4( n ))( o ) (p) y^(( q )4( r ))( s ))/( t )4( u ) (v)=c (w) (x) (d) None of these

Solution of (dy)/(dx)+2x y=y is (a) ( b ) (c) y=c (d) e^( e ) (f) x-( g ) x^((( h )2( i ))( j ) (k))( l ) (m) (n) (b) ( o ) (p) y=c( q ) e^( r ) (s) (t) x^((( u )2( v ))( w )-x (x))( y ) (z) (aa) (c) ( d ) (e) y=c( f ) e^(( g ) x (h))( i ) (j) (k) (d) ( l ) (m) y=c (n) e^( o ) (p)-( q ) x^((( r )2( s ))( t ) (u))( v ) (w) (x)

In Fig.93, if A O C is a straight line, then x= (a) ( b ) (c) (d) (e) 42^(( f )0( g ))( h ) (i) (j) (b) ( k ) (l) (m) (n) 52^(( o )0( p ))( q ) (r) (s) (c) ( d ) (e) (f) (g) 142^(( h )0( i ))( j ) (k) (l) (d) ( m ) (n) (o) (p) 38^(( q )0( r ))( s ) (t) (u)

The solution of the differential equation (d^2y)/(dx^2)=sin3x+e^x+x^2 when y_1(0)=1 and y(0) is (a) ( b ) (c) (d)(( e )-sin3x)/( f )9( g ) (h)+( i ) e^(( j ) x (k))( l )+( m )(( n ) (o) x^(( p )4( q ))( r ))/( s )(( t ) 12)( u ) (v)+( w )1/( x )3( y ) (z) x-1( a a ) (bb) (cc) ( d d ) (ee) (ff)(( g g )-sin3x)/( h h )9( i i ) (jj)+( k k ) e^(( l l ) x (mm))( n n )+( o o )(( p p ) (qq) x^(( r r )4( s s ))( t t ))/( u u )(( v v ) 12)( w w ) (xx)+( y y )1/( z z )3( a a a ) (bbb) x (ccc) (ddd) (eee) ( f f f ) (ggg) (hhh)(( i i i )-cos3x)/( j j j )3( k k k ) (lll)+( m m m ) e^(( n n n ) x (ooo))( p p p )+( q q q )(( r r r ) (sss) x^(( t t t )4( u u u ))( v v v ))/( w w w )(( x x x ) 12)( y y y ) (zzz)+( a a a a )1/( b b b b )3( c c c c ) (dddd) x+1( e e e e ) (ffff) (d) None of these

A function y=f(x) satisfies (x+1)f^(prime)(x)-2(x^2+x)f(x)=(e^x^2)/((x+1)),AAx >-1. If f(0)=5, then f(x) is (a) ( b ) (c)(( d ) (e) (f)(( g )3x+5)/( h )(( i ) x+1)( j ) (k) (l))( m ) e^( n ) (o) (p) x^((( q )2( r ))( s ) (t))( u ) (v) (w) (b) ( x ) (y)(( z ) (aa) (bb)(( c c )6x+5)/( d d )(( e e ) x+1)( f f ) (gg) (hh))( i i ) e^( j j ) (kk) (ll) x^((( m m )2( n n ))( o o ) (pp))( q q ) (rr) (ss) (c) ( d ) (e)(( f ) (g) (h)(( i )6x+5)/( j )(( k ) x+1)( l ) (m) (n))( o ) e^( p ) (q) (r) x^((( s )2( t ))( u ) (v))( w ) (x) (y) (d) ( z ) (aa)(( b b ) (cc) (dd)(( e e )5-6x)/( f f )(( g g ) x+1)( h h ) (ii) (jj))( k k ) e^( l l ) (mm) (nn) x^((( o o )2( p p ))( q q ) (rr))( s s ) (tt) (uu)

The solution of the differential equation (x^2y^2-1)dy+2xy^3dx=0 is (a) ( b ) (c)1+( d ) x^(( e )2( f ))( g ) (h) y^(( i )2( j ))( k )=c x (l) (m) (b) ( n ) (o)1+( p ) x^(( q )2( r ))( s ) (t) y^(( u )2( v ))( w )=c y (x) (y) (c) ( d ) (e) y=0( f ) (g) (d) ( h ) (i) y=-( j )1/( k )(( l ) (m) x^(( n )2( o ))( p ))( q ) (r) (s) (t)

An angle is thrice its supplement. The measure of the angle is (a) ( b ) (c) (d) (e) 120^(( f )0( g ))( h ) (i) (j) (b) ( k ) (l) (m) (n) 105^(( o )0( p ))( q ) (r) (s) (c) ( d ) (e) (f) (g) 135^(( h )0( i ))( j ) (k) (l) (d) ( m ) (n) (o) (p) 150^(( q )0( r ))( s ) (t) (u)

The measure of an angle which is its own complement is (a) ( b ) (c) (d) (e) 30^(( f )0( g ))( h ) (i) (j) (b) ( k ) (l) (m) (n) 60^(( o )0( p ))( q ) (r) (s) (c) ( d ) (e) (f) (g) 90^(( h )0( i ))( j ) (k) (l) (d) ( m ) (n) (o) (p) 45^(( q )0( r ))( s ) (t) (u)

OBJECTIVE RD SHARMA ENGLISH-DIFFERENTIAL EQUATIONS-Section I - Solved Mcqs
  1. The solution of the differential equation y(xy + 2x^2y^2) dx + x(xy-x...

    Text Solution

    |

  2. The equation of the family of curves which intersect the hyperbola xy=...

    Text Solution

    |

  3. If x(t) is a solution of ((1+t)dy)/(dx)-t y=1 and y(0)=-1 then y(1) ...

    Text Solution

    |

  4. Solve the differential equation: (1+y^2) + ( x - e^(tan^-1 y) ) dy/dx...

    Text Solution

    |

  5. If sinx is an integrating factor of the differential equation (dy)/...

    Text Solution

    |

  6. A function y=f(x)has a second order derivative f''(x)=6(x-1)dot If i...

    Text Solution

    |

  7. IF x dy = y ( dx + y dy ) , y(1) = 1 and y ( x) gt 0 then ...

    Text Solution

    |

  8. Tangent is drawn at any point P of a curve which passes through (1, 1...

    Text Solution

    |

  9. Let f be a non-negative function defined on the interval [0,1]. If int...

    Text Solution

    |

  10. Solution of the following equation cos x dy =y(sinx-y)dx,0ltxlt(pi)/...

    Text Solution

    |

  11. Let f:[1,oo] be a differentiable function such that f(1)=2. If int1...

    Text Solution

    |

  12. If (dy)/(dx)=y+3 and y(0)=2, then y(ln 2) is equal to

    Text Solution

    |

  13. Consider the differential equation y^2dx+(x-1/y)dy=0 if y(1)=1 then x ...

    Text Solution

    |

  14. The curve that passes through the point (2, 3) and has the property ...

    Text Solution

    |

  15. Let I be the purchase value of an equipment and V(t) be the value afte...

    Text Solution

    |

  16. The general solution of the differential equation (dy)/(dx)+(2)/(x)y=...

    Text Solution

    |

  17. If y(x) satisfies the differential equation y'-y tan x=2x and y(0)=0, ...

    Text Solution

    |

  18. A curve passes through the point (1,pi/6) . Let the slope of the curve...

    Text Solution

    |

  19. Consider the family of all circles whose centers lie on the straight l...

    Text Solution

    |

  20. The sum of the squares of the perpendicular drawn from the points (0,1...

    Text Solution

    |