Home
Class 12
MATHS
If vec a = hati + 2 hatj + 2 hat k and...

If ` vec a = hati + 2 hatj + 2 hat k and vec b = 3 hati + 6 hatj + 2 hat k ` then the vector in the direction of ` vec a ` and having mgnitude as `|vec b|` is

A

`7( hati + 2 hatj + 2 hat k ) `

B

`(7)/(9)( hati + 2 hatj + 2 hat k ) `

C

`(7)/(3)( hati + 2 hatj + 2 hat k ) `

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find a vector in the direction of \(\vec{a}\) that has the same magnitude as \(\vec{b}\). Let's break this down step by step. ### Step 1: Define the vectors \(\vec{a}\) and \(\vec{b}\) Given: \[ \vec{a} = \hat{i} + 2\hat{j} + 2\hat{k} \] \[ \vec{b} = 3\hat{i} + 6\hat{j} + 2\hat{k} \] ### Step 2: Calculate the magnitude of \(\vec{b}\) The magnitude of a vector \(\vec{b} = a\hat{i} + b\hat{j} + c\hat{k}\) is given by: \[ |\vec{b}| = \sqrt{a^2 + b^2 + c^2} \] For \(\vec{b}\): \[ |\vec{b}| = \sqrt{3^2 + 6^2 + 2^2} = \sqrt{9 + 36 + 4} = \sqrt{49} = 7 \] ### Step 3: Calculate the magnitude of \(\vec{a}\) Now, we calculate the magnitude of \(\vec{a}\): \[ |\vec{a}| = \sqrt{1^2 + 2^2 + 2^2} = \sqrt{1 + 4 + 4} = \sqrt{9} = 3 \] ### Step 4: Find the unit vector in the direction of \(\vec{a}\) The unit vector in the direction of \(\vec{a}\) is given by: \[ \hat{u}_a = \frac{\vec{a}}{|\vec{a}|} \] Substituting the values: \[ \hat{u}_a = \frac{\hat{i} + 2\hat{j} + 2\hat{k}}{3} = \frac{1}{3}\hat{i} + \frac{2}{3}\hat{j} + \frac{2}{3}\hat{k} \] ### Step 5: Scale the unit vector to have the magnitude of \(|\vec{b}|\) To find the vector in the direction of \(\vec{a}\) with magnitude \(|\vec{b}|\), we multiply the unit vector \(\hat{u}_a\) by \(|\vec{b}|\): \[ \vec{c} = |\vec{b}| \cdot \hat{u}_a = 7 \cdot \left(\frac{1}{3}\hat{i} + \frac{2}{3}\hat{j} + \frac{2}{3}\hat{k}\right) \] Calculating this gives: \[ \vec{c} = \frac{7}{3}\hat{i} + \frac{14}{3}\hat{j} + \frac{14}{3}\hat{k} \] ### Final Answer Thus, the vector in the direction of \(\vec{a}\) and having magnitude \(|\vec{b}|\) is: \[ \vec{c} = \frac{7}{3}\hat{i} + \frac{14}{3}\hat{j} + \frac{14}{3}\hat{k} \] ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • ALGEBRAIC INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|39 Videos

Similar Questions

Explore conceptually related problems

For given vector, vec a = 2 hat i j +2 hat k and vec b = - hat i + hat j - hat k , find the unit vector in the direction of the vector vec a + vec b .

If vec a= hat i+ hat j , vec b= hat j+ hat k , vec c= hat k+ hat i find the unit vector in the direction of vec a+ vec b+ vec cdot

If vec(a) = 2 hat(i) + hat(j) + 2hat(k) and vec(b) = 5hat(i)- 3 hat(j) + hat(k) , then the projection of vec(b) on vec(a) is

If vec(a) = hat(i) - 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) - 3 hat(j) + 5 hat(k) , then angle between vec(a) and vec(b) is

If vec a= hat i+3 hat j-2 hat k\ a n d\ vec b=- hat i+3 hat k ,\ find \ | vec axx vec b|dot

If vec(a) = 2 hat(i) - hat(j) + hat(k) and vec(b) = hat(i) - 2 hat(j) + hat(k) then projection of vec(b)' on ' vec(a) is

If vec a= hat i+ hat j+ hat k and vec b= hat i-2 hat j+ hat k , then find vector vec c such that vec a . vec c=2 and vec axx vec c= vec bdot

If vec a=2 hat i-3 hat j+ hat k ,\ vec b=- hat i+ hat k ,\ vec c=2 hat j- hat k are three vectors find the area of the parallelogram having diagonals ( vec a+ vec b)\ a n d\ ( vec b+ vec c)dot

If vec a=3 hat i- hat j-2 hat k and vec b=2 hat i+3 hat j+ hat k , find ( vec a+2 vec b)xx(2 vec a- vec b)dot

Let veca = hati - 2 hatj + 2hatk and vec b = 2 hati - hatj + hatk be two vectors. If vec c is a vector such that vecb xx vec c = vec b xx vec a and vec c vec a = 1 , then vec c vec b is equal to :

OBJECTIVE RD SHARMA ENGLISH-ALGEBRA OF VECTORS-Exercise
  1. If P, Q, R are three points with respective position vectors hati + ha...

    Text Solution

    |

  2. Let ABC be a triangle, the position vectors of whose vertices are 7hat...

    Text Solution

    |

  3. If vec a = hati + 2 hatj + 2 hat k and vec b = 3 hati + 6 hatj + 2 h...

    Text Solution

    |

  4. veca , vec b , vec c are non-coplanar vectors and x vec a + y vec b ...

    Text Solution

    |

  5. The vector vec c , directed along the internal bisector of the angle...

    Text Solution

    |

  6. A, B have vectors vec a , vec b relative to the origin O and X, Y d...

    Text Solution

    |

  7. If a vector ofmagnitude 50 is collinear with vector vecb = 6 hat i - 8...

    Text Solution

    |

  8. The vector vec c , directed along the internal bisector of the angle...

    Text Solution

    |

  9. Let vec a , vec b ,vec c are three non- coplanar vectors such that ...

    Text Solution

    |

  10. If vec a, vec b , vec c are three non- coplanar vectors such that v...

    Text Solution

    |

  11. veca, vecb ,vecc are three non zero vectors no two of which are collon...

    Text Solution

    |

  12. Let alpha,beta and gamma be distinct real numbers. The points with pos...

    Text Solution

    |

  13. The points with position vectors 60hati+3hatj,40hati-8hatj, ahati-52ha...

    Text Solution

    |

  14. If the points with position vectors 10 hat i+3 hat j ,12 hat i-5 ha...

    Text Solution

    |

  15. If C is the middle point of AB and P is any point outside AB, then

    Text Solution

    |

  16. The median AD of the DeltaABC is bisected at E.BE meets AC in F. then,...

    Text Solution

    |

  17. In a trapezium, the vector BC=lamdaAD. We will then find that p=AC+BD ...

    Text Solution

    |

  18. If vec xa n d vec y are two non-collinear vectors and A B C isa trian...

    Text Solution

    |

  19. If D, E, F are respectively the mid-points of AB, AC and BC respectiv...

    Text Solution

    |

  20. Forces 3 O vec A , 5 O vec B act along OA and OB. If their resultant ...

    Text Solution

    |