Home
Class 12
MATHS
veca , vec b , vec c are non-coplanar v...

`veca , vec b , vec c ` are non-coplanar vectors and ` x vec a + y vec b + z vec c = vec 0` then

A

at least of one of x, y, z is zero

B

x, y, z are necessarily zero

C

none of them are zero

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the equation given: \[ x \vec{a} + y \vec{b} + z \vec{c} = \vec{0} \] where \( \vec{a}, \vec{b}, \vec{c} \) are non-coplanar vectors. We want to find the conditions under which this equation holds true. ### Step 1: Understanding Non-Coplanar Vectors Non-coplanar vectors are vectors that do not lie in the same plane. This means that they are linearly independent. For vectors to be non-coplanar, the only solution to the linear combination of these vectors equaling zero must be the trivial solution. ### Step 2: Setting Up the Equation Given the equation: \[ x \vec{a} + y \vec{b} + z \vec{c} = \vec{0} \] we can interpret this as a linear combination of the vectors \( \vec{a}, \vec{b}, \vec{c} \). ### Step 3: Analyzing the Linear Combination Since \( \vec{a}, \vec{b}, \vec{c} \) are non-coplanar, the only way for their linear combination to equal the zero vector is if the coefficients \( x, y, z \) are all zero. This is a property of linearly independent vectors. ### Step 4: Conclusion Thus, we can conclude that: \[ x = 0, \quad y = 0, \quad z = 0 \] This means that for the equation \( x \vec{a} + y \vec{b} + z \vec{c} = \vec{0} \) to hold true, the coefficients \( x, y, z \) must all be zero. ### Final Answer The correct conclusion is that \( x = 0, y = 0, z = 0 \) when \( \vec{a}, \vec{b}, \vec{c} \) are non-coplanar vectors. ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • ALGEBRAIC INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|39 Videos

Similar Questions

Explore conceptually related problems

If vec a , vec b , vec c are three non-coplanar vectors, prove that [ vec a+ vec b+ vec c vec a+ vec b vec a+ vec c]=-[ vec a vec b vec c]

Let vec a , vec ba n d vec c be three non-coplanar vectors and vec p , vec qa n d vec r the vectors defined by the relation vec p=( vec bxx vec c)/([ vec a vec b vec c]), vec q=( vec cxx vec a)/([ vec a vec b vec c])a n d vec r=( vec axx vec b)/([ vec a vec b vec c])dot Then the value of the expression ( vec a+ vec b)dot vec p+( vec b+ vec c)dot vec q+( vec c+ vec a)dot vec r is a. 0 b. 1 c. 2 d. 3

Let vec a , vec ba n d vec c be three non-coplanar vectors and vec p , vec qa n d vec r the vectors defined by the relation vec p=( vec bxx vec c)/([ vec a vec b vec c]), vec q=( vec cxx vec a)/([ vec a vec b vec c])a n d vec r=( vec axx vec b)/([ vec a vec b vec c])dot Then the value of the expression ( vec a+ vec b)dot vec p+( vec b+ vec c)dot vec q+( vec c+ vec a)dot vec r is a. 0 b. 1 c. 2 d. 3

If vec a, vec b , vec c are three non- coplanar vectors such that vec a + vec b + vec c = alpha vec d and vec b +vec c + vec d = beta vec a, " then " vec a + vec b + vec c + vec d to equal to

If vec a , vec b and vec c are three non-coplanar vectors, then ( vec a+ vec b+ vec c).[( vec a+ vec b)xx( vec a+ vec c)] equals a. 0 b. [ vec a vec b vec c] c. 2[ vec a vec b vec c] d. -[ vec a vec b vec c]

If vec a , vec b ,and vec c are non-coplanar unit vectors such that vec axx( vec bxx vec c)=( vec b+ vec c)/(sqrt(2)), vec b and vec c are non-parallel, then prove that the angel between vec a and vec b, is 3pi//4.

If vec a ,\ vec b ,\ vec c are three non coplanar vectors, then ( vec a+ vec b+ vec c)dot[( vec a+ vec b)xx) vec a+ vec c)] equals [ vec a\ vec b\ vec c] b. "\ "0"\ " c. 2[ vec a\ vec b\ vec c] d. -[ vec a\ vec b\ vec c]

If vec a , vec b and vec c are non-coplanar unit vectors such that vec axx( vec bxx vec c)=( vec b+ vec c)/(sqrt(2)) , then the angle between vec a and vec b is a. 3pi//4 b. pi//4 c. pi//2 d. pi

If vec a , vec b , vec c are three non coplanar vectors such that vec adot vec a= vec d vec b= vec ddot vec c=0 , then show that vec d is the null vector.

[( vec axx vec b)xx( vec bxx vec c)( vec bxx vec c)xx( vec cxx vec a)( vec cxx vec a)xx( vec axx vec b)] is equal to (where vec a , vec ba n d vec c are nonzero non-coplanar vector) [ vec a vec b vec c]^2 b. [ vec a vec b vec c]^3 c. [ vec a vec b vec c]^4 d. [ vec a vec b vec c]

OBJECTIVE RD SHARMA ENGLISH-ALGEBRA OF VECTORS-Exercise
  1. Let ABC be a triangle, the position vectors of whose vertices are 7hat...

    Text Solution

    |

  2. If vec a = hati + 2 hatj + 2 hat k and vec b = 3 hati + 6 hatj + 2 h...

    Text Solution

    |

  3. veca , vec b , vec c are non-coplanar vectors and x vec a + y vec b ...

    Text Solution

    |

  4. The vector vec c , directed along the internal bisector of the angle...

    Text Solution

    |

  5. A, B have vectors vec a , vec b relative to the origin O and X, Y d...

    Text Solution

    |

  6. If a vector ofmagnitude 50 is collinear with vector vecb = 6 hat i - 8...

    Text Solution

    |

  7. The vector vec c , directed along the internal bisector of the angle...

    Text Solution

    |

  8. Let vec a , vec b ,vec c are three non- coplanar vectors such that ...

    Text Solution

    |

  9. If vec a, vec b , vec c are three non- coplanar vectors such that v...

    Text Solution

    |

  10. veca, vecb ,vecc are three non zero vectors no two of which are collon...

    Text Solution

    |

  11. Let alpha,beta and gamma be distinct real numbers. The points with pos...

    Text Solution

    |

  12. The points with position vectors 60hati+3hatj,40hati-8hatj, ahati-52ha...

    Text Solution

    |

  13. If the points with position vectors 10 hat i+3 hat j ,12 hat i-5 ha...

    Text Solution

    |

  14. If C is the middle point of AB and P is any point outside AB, then

    Text Solution

    |

  15. The median AD of the DeltaABC is bisected at E.BE meets AC in F. then,...

    Text Solution

    |

  16. In a trapezium, the vector BC=lamdaAD. We will then find that p=AC+BD ...

    Text Solution

    |

  17. If vec xa n d vec y are two non-collinear vectors and A B C isa trian...

    Text Solution

    |

  18. If D, E, F are respectively the mid-points of AB, AC and BC respectiv...

    Text Solution

    |

  19. Forces 3 O vec A , 5 O vec B act along OA and OB. If their resultant ...

    Text Solution

    |

  20. If aBCDEF is a regular hexagon with A vec(B) = vec(a) and B vec(C ) =...

    Text Solution

    |