Home
Class 12
MATHS
A, B have vectors vec a , vec b relati...

A, B have vectors ` vec a , vec b ` relative to the origin O and X, Y divide ` vec(AB)` internally and externally respectively in the ratio `2:1` . Then , `vec (XY)=`

A

`(3)/(2) (vec b - vec a) `

B

`(4)/(3) (vec a - vec b) `

C

`(5)/(6) (vec b - vec a) `

D

`(4)/(3) (vec b - vec a) `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the vector \(\vec{XY}\) where points \(X\) and \(Y\) divide the line segment \(\vec{AB}\) internally and externally in the ratio \(2:1\). ### Step-by-Step Solution 1. **Identify the Position Vectors**: Let the position vector of point \(A\) be \(\vec{a}\) and the position vector of point \(B\) be \(\vec{b}\). The origin \(O\) is represented by the vector \(\vec{0}\). 2. **Find the Position Vector of Point \(X\)** (Internal Division): Since \(X\) divides \(\vec{AB}\) internally in the ratio \(2:1\), we can use the section formula: \[ \vec{x} = \frac{m\vec{b} + n\vec{a}}{m+n} \] where \(m = 2\) and \(n = 1\). \[ \vec{x} = \frac{2\vec{b} + 1\vec{a}}{2 + 1} = \frac{2\vec{b} + \vec{a}}{3} \] 3. **Find the Position Vector of Point \(Y\)** (External Division): Since \(Y\) divides \(\vec{AB}\) externally in the ratio \(2:1\), we can use the external division formula: \[ \vec{y} = \frac{m\vec{b} - n\vec{a}}{m-n} \] where \(m = 2\) and \(n = 1\). \[ \vec{y} = \frac{2\vec{b} - 1\vec{a}}{2 - 1} = 2\vec{b} - \vec{a} \] 4. **Calculate the Vector \(\vec{XY}\)**: The vector \(\vec{XY}\) is given by: \[ \vec{XY} = \vec{y} - \vec{x} \] Substituting the values of \(\vec{y}\) and \(\vec{x}\): \[ \vec{XY} = \left(2\vec{b} - \vec{a}\right) - \left(\frac{2\vec{b} + \vec{a}}{3}\right) \] 5. **Simplify the Expression**: To simplify, we need a common denominator: \[ \vec{XY} = \left(2\vec{b} - \vec{a}\right) - \left(\frac{2\vec{b}}{3} + \frac{\vec{a}}{3}\right) \] \[ = \left(2\vec{b} - \frac{2\vec{b}}{3}\right) - \left(\vec{a} + \frac{\vec{a}}{3}\right) \] \[ = \left(\frac{6\vec{b}}{3} - \frac{2\vec{b}}{3}\right) - \left(\frac{3\vec{a}}{3} + \frac{\vec{a}}{3}\right) \] \[ = \frac{4\vec{b}}{3} - \frac{4\vec{a}}{3} \] \[ = \frac{4}{3}(\vec{b} - \vec{a}) \] ### Final Answer: Thus, the vector \(\vec{XY}\) is: \[ \vec{XY} = \frac{4}{3}(\vec{b} - \vec{a}) \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • ALGEBRAIC INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|39 Videos

Similar Questions

Explore conceptually related problems

P ,Q have position vectors vec a& vec b relative to the origin ' O^(prime)&X , Ya n d vec P Q internally and externally respectgively in the ratio 2:1 Vector vec X Y= 3/2( vec b- vec a) b. 4/3( vec a- vec b) c. 5/6( vec b- vec a) d. 4/3( vec b- vec a)

Find the position vectors of the points which divide the join of the points 2 vec a-3 vec ba n d3 vec a-2 vec b internally and externally in the ratio 2:3 .

Show that the vectors vec a , vec b and vec c are coplanar if vec a+ vec b , vec b+ vec c and vec c+ vec a are coplanar.

P and Q are two points with position vectors 3 vec a-2 vec b and vec a+ vec b respectively. Write the position vector of a point R which divides the line segment PQ in the ratio 2:1 externally.

If vec a ,\ vec b ,\ vec c are position vectors o the point A ,\ B ,\ a n d\ C respectively, write the value of vec A B+ vec B C+ vec A Cdot

Show that vectors vec a ,\ vec b ,\ vec c are coplanar if vec a+ vec b ,\ vec b+ vec c ,\ vec c+ vec a are coplanar.

If the two adjacent sides of two rectangles are represented by vectors vec p=5 vec a-3 vec b ; vec q=- vec a-2 vec b \ and \ vec r=-4 vec a- vec b ; vec s=- vec a+ vec b , respectively, then the angel between the vector vec x=1/3( vec p+ vec r+ vec s) \ and \ vec y=1/5( vec r+ vec s) is a. -cos^(-1)((19)/(5sqrt(43))) b. cos^(-1)((19)/(5sqrt(43))) c. pi-cos^(-1)((19)/(5sqrt(43))) d. cannot be evaluate

Find the position vector of a point which divides the join of points with position vectors vec a-2 vec b and 2 vec a+ vec b externally in the ratio 2:1.

veca , vec b , vec c are non-coplanar vectors and x vec a + y vec b + z vec c = vec 0 then

If the position vector of a point A is vec a + 2 vec b and vec a divides AB in the ratio 2:3 , then the position vector of B, is

OBJECTIVE RD SHARMA ENGLISH-ALGEBRA OF VECTORS-Exercise
  1. veca , vec b , vec c are non-coplanar vectors and x vec a + y vec b ...

    Text Solution

    |

  2. The vector vec c , directed along the internal bisector of the angle...

    Text Solution

    |

  3. A, B have vectors vec a , vec b relative to the origin O and X, Y d...

    Text Solution

    |

  4. If a vector ofmagnitude 50 is collinear with vector vecb = 6 hat i - 8...

    Text Solution

    |

  5. The vector vec c , directed along the internal bisector of the angle...

    Text Solution

    |

  6. Let vec a , vec b ,vec c are three non- coplanar vectors such that ...

    Text Solution

    |

  7. If vec a, vec b , vec c are three non- coplanar vectors such that v...

    Text Solution

    |

  8. veca, vecb ,vecc are three non zero vectors no two of which are collon...

    Text Solution

    |

  9. Let alpha,beta and gamma be distinct real numbers. The points with pos...

    Text Solution

    |

  10. The points with position vectors 60hati+3hatj,40hati-8hatj, ahati-52ha...

    Text Solution

    |

  11. If the points with position vectors 10 hat i+3 hat j ,12 hat i-5 ha...

    Text Solution

    |

  12. If C is the middle point of AB and P is any point outside AB, then

    Text Solution

    |

  13. The median AD of the DeltaABC is bisected at E.BE meets AC in F. then,...

    Text Solution

    |

  14. In a trapezium, the vector BC=lamdaAD. We will then find that p=AC+BD ...

    Text Solution

    |

  15. If vec xa n d vec y are two non-collinear vectors and A B C isa trian...

    Text Solution

    |

  16. If D, E, F are respectively the mid-points of AB, AC and BC respectiv...

    Text Solution

    |

  17. Forces 3 O vec A , 5 O vec B act along OA and OB. If their resultant ...

    Text Solution

    |

  18. If aBCDEF is a regular hexagon with A vec(B) = vec(a) and B vec(C ) =...

    Text Solution

    |

  19. If A,B and C are the vertices of a triangle with position vectors vec(...

    Text Solution

    |

  20. Let vec a=hati -2 hatj + 3 hatk, vec b = 3 hati + 3 hatj -hat k and v...

    Text Solution

    |