Home
Class 12
MATHS
Let vec a , vec b ,vec c are three non...

Let ` vec a , vec b ,vec c ` are three non- coplanar vectors such that
`vecr_(1)=veca + vec c , vecr_(2)= vec b+vec c -veca , vec r_(3) = vec c + vec a + vecb, vec r = 2 vec a - 3 vec b + 4 vec c. `
If `vec r = lambda_(1)vecr_(1)+lambda_(2)vecr_(2)+lambda_(3)vecr_(3)`, then

A

`lambda_(1)=7`

B

`lambda_(1)+lambda_(3)=3`

C

`lambda_(1)+lambda_(2)+lambda_(3)=3`

D

`lambda_(3)+lambda_(2) =2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to express the vector \( \vec{r} \) in terms of the vectors \( \vec{r}_1, \vec{r}_2, \) and \( \vec{r}_3 \) and find the values of \( \lambda_1, \lambda_2, \) and \( \lambda_3 \). ### Step 1: Write down the given vectors We have the following vectors defined: - \( \vec{r}_1 = \vec{a} + \vec{c} \) - \( \vec{r}_2 = \vec{b} + \vec{c} - \vec{a} \) - \( \vec{r}_3 = \vec{c} + \vec{a} + \vec{b} \) - \( \vec{r} = 2\vec{a} - 3\vec{b} + 4\vec{c} \) ### Step 2: Set up the equation We need to express \( \vec{r} \) as a linear combination of \( \vec{r}_1, \vec{r}_2, \) and \( \vec{r}_3 \): \[ \vec{r} = \lambda_1 \vec{r}_1 + \lambda_2 \vec{r}_2 + \lambda_3 \vec{r}_3 \] ### Step 3: Substitute the expressions for \( \vec{r}_1, \vec{r}_2, \) and \( \vec{r}_3 \) Substituting the expressions for \( \vec{r}_1, \vec{r}_2, \) and \( \vec{r}_3 \) into the equation, we get: \[ 2\vec{a} - 3\vec{b} + 4\vec{c} = \lambda_1 (\vec{a} + \vec{c}) + \lambda_2 (\vec{b} + \vec{c} - \vec{a}) + \lambda_3 (\vec{c} + \vec{a} + \vec{b}) \] ### Step 4: Expand the right-hand side Expanding the right-hand side: \[ = \lambda_1 \vec{a} + \lambda_1 \vec{c} + \lambda_2 \vec{b} + \lambda_2 \vec{c} - \lambda_2 \vec{a} + \lambda_3 \vec{c} + \lambda_3 \vec{a} + \lambda_3 \vec{b} \] Combining like terms: \[ = (\lambda_1 - \lambda_2 + \lambda_3) \vec{a} + (\lambda_2 + \lambda_3) \vec{b} + (\lambda_1 + \lambda_2 + \lambda_3) \vec{c} \] ### Step 5: Equate coefficients Now we equate the coefficients of \( \vec{a}, \vec{b}, \) and \( \vec{c} \) from both sides: 1. For \( \vec{a} \): \[ \lambda_1 - \lambda_2 + \lambda_3 = 2 \quad (1) \] 2. For \( \vec{b} \): \[ \lambda_2 + \lambda_3 = -3 \quad (2) \] 3. For \( \vec{c} \): \[ \lambda_1 + \lambda_2 + \lambda_3 = 4 \quad (3) \] ### Step 6: Solve the system of equations From equation (2): \[ \lambda_3 = -3 - \lambda_2 \quad (4) \] Substituting (4) into (1): \[ \lambda_1 - \lambda_2 + (-3 - \lambda_2) = 2 \] \[ \lambda_1 - 2\lambda_2 - 3 = 2 \] \[ \lambda_1 - 2\lambda_2 = 5 \quad (5) \] Now substituting (4) into (3): \[ \lambda_1 + \lambda_2 + (-3 - \lambda_2) = 4 \] \[ \lambda_1 - 3 = 4 \] \[ \lambda_1 = 7 \quad (6) \] ### Step 7: Substitute \( \lambda_1 \) back to find \( \lambda_2 \) and \( \lambda_3 \) Substituting (6) into (5): \[ 7 - 2\lambda_2 = 5 \] \[ -2\lambda_2 = -2 \] \[ \lambda_2 = 1 \quad (7) \] Now substituting (7) into (4): \[ \lambda_3 = -3 - 1 = -4 \quad (8) \] ### Final Values Thus, we have: - \( \lambda_1 = 7 \) - \( \lambda_2 = 1 \) - \( \lambda_3 = -4 \) ### Conclusion The values of \( \lambda_1, \lambda_2, \) and \( \lambda_3 \) are \( 7, 1, \) and \( -4 \) respectively.
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • ALGEBRAIC INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|39 Videos

Similar Questions

Explore conceptually related problems

If vec a , vec b , vec c are three non-coplanar vectors, prove that [ vec a+ vec b+ vec c vec a+ vec b vec a+ vec c]=-[ vec a vec b vec c]

veca , vec b , vec c are non-coplanar vectors and x vec a + y vec b + z vec c = vec 0 then

If vec a, vec b , vec c are three non- coplanar vectors such that vec a + vec b + vec c = alpha vec d and vec b +vec c + vec d = beta vec a, " then " vec a + vec b + vec c + vec d to equal to

If vec a , vec b , vec c are three non coplanar vectors such that vec adot vec a= vec d vec b= vec ddot vec c=0 , then show that vec d is the null vector.

If vec a , vec b ,a n d vec c are three non-coplanar non-zero vecrtors, then prove that ( vec a . vec a) vec bxx vec c+( vec a . vec b) vec cxx vec a+( vec a . vec c) vec axx vec b=[ vec b vec c vec a] vec a

Let vec a , vec b , vec c be the three unit vectors such that vec a+5 vec b+3 vec c= vec0 , then vec a. ( vec bxx vec c) is equal to

If veca , vec b , vec c are three vectors such that veca+ vec b+ vec c= vec0 , then prove that vec axx vec b= vec bxx vec c= vec cxx vec a

If vec a ,\ vec b ,\ vec c are three vectors such that vec a. vec b= vec a.\ vec c and vec a\ xx\ vec b= vec a\ xx\ vec c ,\ vec a\ !=0 , then show that vec b= vec c .

vec a , vec b , vec c are three vectors such that |vec a | = 5 | vec b | =8, |vec c | = 3 if vec a + vec b + vec c = 8 hati+ 6hatj , find the value of vec a , vec b +vec b .vec c + vec c .vec a

If vec a ,\ vec b ,\ vec c are non coplanar vectors, prove that the following vectors are non coplanar: \ vec a+2 vec b+3 vec c ,\ 2 vec a+ vec b+3 vec c\ a n d\ vec a+ vec b+ vec c

OBJECTIVE RD SHARMA ENGLISH-ALGEBRA OF VECTORS-Exercise
  1. The vector vec c , directed along the internal bisector of the angle...

    Text Solution

    |

  2. A, B have vectors vec a , vec b relative to the origin O and X, Y d...

    Text Solution

    |

  3. If a vector ofmagnitude 50 is collinear with vector vecb = 6 hat i - 8...

    Text Solution

    |

  4. The vector vec c , directed along the internal bisector of the angle...

    Text Solution

    |

  5. Let vec a , vec b ,vec c are three non- coplanar vectors such that ...

    Text Solution

    |

  6. If vec a, vec b , vec c are three non- coplanar vectors such that v...

    Text Solution

    |

  7. veca, vecb ,vecc are three non zero vectors no two of which are collon...

    Text Solution

    |

  8. Let alpha,beta and gamma be distinct real numbers. The points with pos...

    Text Solution

    |

  9. The points with position vectors 60hati+3hatj,40hati-8hatj, ahati-52ha...

    Text Solution

    |

  10. If the points with position vectors 10 hat i+3 hat j ,12 hat i-5 ha...

    Text Solution

    |

  11. If C is the middle point of AB and P is any point outside AB, then

    Text Solution

    |

  12. The median AD of the DeltaABC is bisected at E.BE meets AC in F. then,...

    Text Solution

    |

  13. In a trapezium, the vector BC=lamdaAD. We will then find that p=AC+BD ...

    Text Solution

    |

  14. If vec xa n d vec y are two non-collinear vectors and A B C isa trian...

    Text Solution

    |

  15. If D, E, F are respectively the mid-points of AB, AC and BC respectiv...

    Text Solution

    |

  16. Forces 3 O vec A , 5 O vec B act along OA and OB. If their resultant ...

    Text Solution

    |

  17. If aBCDEF is a regular hexagon with A vec(B) = vec(a) and B vec(C ) =...

    Text Solution

    |

  18. If A,B and C are the vertices of a triangle with position vectors vec(...

    Text Solution

    |

  19. Let vec a=hati -2 hatj + 3 hatk, vec b = 3 hati + 3 hatj -hat k and v...

    Text Solution

    |

  20. If G is the intersection of diagonals of a parallelogram A B C D and O...

    Text Solution

    |