Home
Class 12
MATHS
If vec a , vec b , vec c are three non-...

If `vec a , vec b , vec c ` are three non-zero vectors (no two of which are collinear), such that the pairs of vectors `(vec a + vec b, vec c) and (vec b + vec c , vec a) ` are collinear, then `vec a + vec b + vec c =`

A

`vec a`

B

`vec b`

C

` vec c `

D

`vec 0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the conditions given about the vectors \( \vec{a}, \vec{b}, \vec{c} \). We know that the pairs of vectors \( (\vec{a} + \vec{b}, \vec{c}) \) and \( (\vec{b} + \vec{c}, \vec{a}) \) are collinear. ### Step-by-Step Solution: 1. **Understanding Collinearity**: - Two vectors \( \vec{u} \) and \( \vec{v} \) are collinear if there exists a scalar \( \lambda \) such that \( \vec{u} = \lambda \vec{v} \). - For our case: - \( \vec{a} + \vec{b} = \lambda_1 \vec{c} \) (1) - \( \vec{b} + \vec{c} = \lambda_2 \vec{a} \) (2) 2. **Rearranging Equation (1)**: - From equation (1), we can express \( \vec{a} \): \[ \vec{a} = \lambda_1 \vec{c} - \vec{b} \tag{3} \] 3. **Substituting Equation (3) into Equation (2)**: - Substitute \( \vec{a} \) from equation (3) into equation (2): \[ \vec{b} + \vec{c} = \lambda_2 (\lambda_1 \vec{c} - \vec{b}) \] - Expanding this gives: \[ \vec{b} + \vec{c} = \lambda_2 \lambda_1 \vec{c} - \lambda_2 \vec{b} \] 4. **Rearranging the Equation**: - Bring all terms involving \( \vec{b} \) to one side: \[ \vec{b} + \lambda_2 \vec{b} = \lambda_2 \lambda_1 \vec{c} - \vec{c} \] - Factor out \( \vec{b} \): \[ (1 + \lambda_2) \vec{b} = (\lambda_2 \lambda_1 - 1) \vec{c} \tag{4} \] 5. **Setting Coefficients to Zero**: - Since \( \vec{b} \) and \( \vec{c} \) are non-collinear, the coefficients of \( \vec{b} \) and \( \vec{c} \) must independently equal zero: - From equation (4): \[ 1 + \lambda_2 = 0 \implies \lambda_2 = -1 \] \[ \lambda_2 \lambda_1 - 1 = 0 \implies -\lambda_1 - 1 = 0 \implies \lambda_1 = -1 \] 6. **Finding \( \vec{a} + \vec{b} + \vec{c} \)**: - Substitute \( \lambda_1 \) and \( \lambda_2 \) back into equation (1): \[ \vec{a} + \vec{b} = -1 \cdot \vec{c} \implies \vec{a} + \vec{b} + \vec{c} = 0 \] ### Final Result: \[ \vec{a} + \vec{b} + \vec{c} = \vec{0} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos
  • ALGEBRAIC INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|39 Videos

Similar Questions

Explore conceptually related problems

If vec a ,\ vec b ,\ vec c are three non-zero vectors, no two of which are collinear and the vector vec a+ vec b is collinear with vec c ,\ vec b+ vec c is collinear with vec a ,\ t h e n\ vec a+ vec b+ vec c= vec a b. vec b c. vec c d. none of these

Show that the vectors vec a - vec b, vec b - vec c , vec c - vec a are coplaner.

If vec a , vec b and vec c are three non-zero vectors, no two of which are collinear, vec a+2 vec b is collinear with vec c and vec b+3 vec c is collinear with vec a , then find the value of | vec a+2 vec b+6 vec c| .

If vec a , vec b, vec c are three non- null vectors such that any two of them are non-collinear. If vec a+ vec b is collinear with vec ca n d vec b+ vec c is collinear with vec a , then find vec a+ vec b+ vecc

Let vec a , vec b, vec c be three non-zero vectors such that any two of them are non-collinear. If vec a+2 vec b is collinear with vec ca n d vec b+3 vec c is collinear with vec a then prove that vec a+2 vec b+6 vec c= vec0

If vec a , vec b , vec c are three non-coplanar vectors, prove that [ vec a+ vec b+ vec c vec a+ vec b vec a+ vec c]=-[ vec a vec b vec c]

Vectors vec a and vec b are non-collinear. Find for what value of n vectors vec c=(n-2) vec a+ vec b and vec d=(2n+1) vec a- vec b are collinear?

If vec a , vec b ,a n d vec c are three non-coplanar non-zero vecrtors, then prove that ( vec a . vec a) vec bxx vec c+( vec a . vec b) vec cxx vec a+( vec a . vec c) vec axx vec b=[ vec b vec c vec a] vec a

If vec a , vec b are two non-collinear vectors, prove that the points with position vectors vec a+ vec b , vec a- vec b and vec a+lambda vec b are collinear for all real values of lambdadot

If vec a , vec b are two non-collinear vectors, prove that the points with position vectors vec a+ vec b , vec a- vec b and vec a+lambda vec b are collinear for all real values of lambdadot

OBJECTIVE RD SHARMA ENGLISH-ALGEBRA OF VECTORS-Chapter Test
  1. If the vectors vec a =2hati + 3hatj +6hatk and vec b are collinear and...

    Text Solution

    |

  2. If vec a , vec b , vec c are three non-zero vectors (no two of which ...

    Text Solution

    |

  3. Vectors vec aa n d vec b are non-collinear. Find for what value of ...

    Text Solution

    |

  4. If the diagonals of a parallelogram are 3 hati + hatj -2hatk and hati ...

    Text Solution

    |

  5. If ABCD is a quadrilateral, then vec(BA) + vec(BC)+vec(CD) + vec(DA)=

    Text Solution

    |

  6. The points with position vectors 60hati+3hatj,40hati-8hatj, ahati-52ha...

    Text Solution

    |

  7. If ABCDEF is a regualr hexagon, then vec(AC) + vec(AD) + vec(EA) + ve...

    Text Solution

    |

  8. In a regular hexagon ABCDEF, vec(AB)+vec(AC)+vec(AD)+vec(AE)+vec(AF)=k...

    Text Solution

    |

  9. If P, Q , R are the mid-points of the sides AB, BC and CA of Delta AB...

    Text Solution

    |

  10. If G is the centroid of the DeltaABC and if G' is the centroid of anot...

    Text Solution

    |

  11. In a quadrilateral ABCD, vec(AB) + vec(DC) =

    Text Solution

    |

  12. If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) +...

    Text Solution

    |

  13. If ABCD is a parallelogram, then vec(AC) - vec(BD) =

    Text Solution

    |

  14. In a Delta ABC, " if " vec(AB) = hati - 7hatj + hatk and vec(BC) = 3 ...

    Text Solution

    |

  15. If vectors vec(AB) = -3hati+ 4hatk and vec(AC) = 5hati -2hatj+4hatk ar...

    Text Solution

    |

  16. The position vectors of P and Q are respectively vec a and vec b . If ...

    Text Solution

    |

  17. If the points whose position vectors are 2hati + hatj + hatk , 6hati -...

    Text Solution

    |

  18. The ratio in which hati + 2 hatj + 3 hatk divides the join of -2hati ...

    Text Solution

    |

  19. If OACB is a parallelogrma with vec( OC) = vec(a) and vec( AB) = vec(...

    Text Solution

    |

  20. The position vectors of the points A, B, C are 2 hati + hatj - hatk , ...

    Text Solution

    |