Home
Class 12
MATHS
Vectors vec aa n d vec b are non-collin...

Vectors ` vec aa n d vec b` are non-collinear. Find for what value of `x` vectors ` vec c=(x-2) vec a+ vec b and vec d=(2x+1) vec a- vec b` are collinear?

A

`1//3`

B

`1//2`

C

1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( x \) for which the vectors \( \vec{c} = (x-2) \vec{a} + \vec{b} \) and \( \vec{d} = (2x+1) \vec{a} - \vec{b} \) are collinear, we can follow these steps: ### Step 1: Understand the condition for collinearity Two vectors \( \vec{c} \) and \( \vec{d} \) are collinear if one is a scalar multiple of the other. This means there exists a scalar \( \lambda \) such that: \[ \vec{c} = \lambda \vec{d} \] ### Step 2: Set up the equation Given: \[ \vec{c} = (x-2) \vec{a} + \vec{b} \] \[ \vec{d} = (2x+1) \vec{a} - \vec{b} \] We can write the collinearity condition as: \[ (x-2) \vec{a} + \vec{b} = \lambda \left( (2x+1) \vec{a} - \vec{b} \right) \] ### Step 3: Expand the right side Expanding the right side gives: \[ (x-2) \vec{a} + \vec{b} = \lambda (2x+1) \vec{a} - \lambda \vec{b} \] ### Step 4: Rearranging the equation Rearranging the equation, we have: \[ (x-2) \vec{a} + \vec{b} + \lambda \vec{b} = \lambda (2x+1) \vec{a} \] This can be rewritten as: \[ (x-2) \vec{a} + (1 + \lambda) \vec{b} = \lambda (2x+1) \vec{a} \] ### Step 5: Compare coefficients Now, we can compare the coefficients of \( \vec{a} \) and \( \vec{b} \) on both sides: 1. Coefficient of \( \vec{a} \): \[ x - 2 = \lambda (2x + 1) \] 2. Coefficient of \( \vec{b} \): \[ 1 + \lambda = 0 \implies \lambda = -1 \] ### Step 6: Substitute \( \lambda \) into the first equation Substituting \( \lambda = -1 \) into the first equation: \[ x - 2 = -1(2x + 1) \] This simplifies to: \[ x - 2 = -2x - 1 \] ### Step 7: Solve for \( x \) Now, we can solve for \( x \): \[ x + 2x = -1 + 2 \] \[ 3x = 1 \] \[ x = \frac{1}{3} \] ### Conclusion Thus, the value of \( x \) for which the vectors \( \vec{c} \) and \( \vec{d} \) are collinear is: \[ \boxed{\frac{1}{3}} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos
  • ALGEBRAIC INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|39 Videos

Similar Questions

Explore conceptually related problems

Vectors vec a and vec b are non-collinear. Find for what value of n vectors vec c=(n-2) vec a+ vec b and vec d=(2n+1) vec a- vec b are collinear?

If vec aa n d vec b are non-collinear vectors, find the value of x for which the vectors vecalpha=(2x+1) vec a- vec b""a n d"" vecbeta=(x-2)"" vec a+ vec b are collinear.

If vec a , vec b are two non-collinear vectors, prove that the points with position vectors vec a+ vec b , vec a- vec b and vec a+lambda vec b are collinear for all real values of lambdadot

If vec a , vec b are two non-collinear vectors, prove that the points with position vectors vec a+ vec b , vec a- vec b and vec a+lambda vec b are collinear for all real values of lambdadot

If vec a and vec b are two non-collinear unit vectors such that | vec a+ vec b|=sqrt(3), find (2 vec a-5 vec b). (3 vec a+ vec b) .

If vec a\ a n d\ vec b are two non collinear unit vectors such that | vec a+ vec b|=sqrt(3),\ find \ (2 vec a-5 vec b). (3 vec a+ vec b)

If vec a , a n d vec b are unit vectors , then find the greatest value of | vec a+ vec b|+| vec a- vec b|dot

If vec a , vec b , vec c are three non-zero vectors (no two of which are collinear), such that the pairs of vectors (vec a + vec b, vec c) and (vec b + vec c , vec a) are collinear, then vec a + vec b + vec c =

Let vec a , vec ba n d vec c , be non-zero non-coplanar vectors. Prove that: vec a-2 vec b+3 vec c ,-2 vec a+3 vec b-4 vec ca n d vec c-3 vec b+5 vec c are coplanar vectors. 2 vec a- vec b+3 vec c , vec a+ vec b-2 vec ca n d vec a+ vec b-3 vec c are non-coplanar vectors.

If vec a\ a n d\ vec b are unit vectors then write the value of | vec axx vec b|^2+( vec adot vec b)^2dot

OBJECTIVE RD SHARMA ENGLISH-ALGEBRA OF VECTORS-Chapter Test
  1. If the vectors vec a =2hati + 3hatj +6hatk and vec b are collinear and...

    Text Solution

    |

  2. If vec a , vec b , vec c are three non-zero vectors (no two of which ...

    Text Solution

    |

  3. Vectors vec aa n d vec b are non-collinear. Find for what value of ...

    Text Solution

    |

  4. If the diagonals of a parallelogram are 3 hati + hatj -2hatk and hati ...

    Text Solution

    |

  5. If ABCD is a quadrilateral, then vec(BA) + vec(BC)+vec(CD) + vec(DA)=

    Text Solution

    |

  6. The points with position vectors 60hati+3hatj,40hati-8hatj, ahati-52ha...

    Text Solution

    |

  7. If ABCDEF is a regualr hexagon, then vec(AC) + vec(AD) + vec(EA) + ve...

    Text Solution

    |

  8. In a regular hexagon ABCDEF, vec(AB)+vec(AC)+vec(AD)+vec(AE)+vec(AF)=k...

    Text Solution

    |

  9. If P, Q , R are the mid-points of the sides AB, BC and CA of Delta AB...

    Text Solution

    |

  10. If G is the centroid of the DeltaABC and if G' is the centroid of anot...

    Text Solution

    |

  11. In a quadrilateral ABCD, vec(AB) + vec(DC) =

    Text Solution

    |

  12. If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) +...

    Text Solution

    |

  13. If ABCD is a parallelogram, then vec(AC) - vec(BD) =

    Text Solution

    |

  14. In a Delta ABC, " if " vec(AB) = hati - 7hatj + hatk and vec(BC) = 3 ...

    Text Solution

    |

  15. If vectors vec(AB) = -3hati+ 4hatk and vec(AC) = 5hati -2hatj+4hatk ar...

    Text Solution

    |

  16. The position vectors of P and Q are respectively vec a and vec b . If ...

    Text Solution

    |

  17. If the points whose position vectors are 2hati + hatj + hatk , 6hati -...

    Text Solution

    |

  18. The ratio in which hati + 2 hatj + 3 hatk divides the join of -2hati ...

    Text Solution

    |

  19. If OACB is a parallelogrma with vec( OC) = vec(a) and vec( AB) = vec(...

    Text Solution

    |

  20. The position vectors of the points A, B, C are 2 hati + hatj - hatk , ...

    Text Solution

    |