Home
Class 12
MATHS
If the diagonals of a parallelogram are ...

If the diagonals of a parallelogram are `3 hati + hatj -2hatk and hati - 3 hatj + 4 hatk,` then the lengths of its sides are

A

`sqrt(8), sqrt(10)`

B

`sqrt(6), sqrt(14)`

C

`sqrt(5), sqrt(12)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the lengths of the sides of the parallelogram given its diagonals, we can follow these steps: ### Step 1: Define the diagonals Let the diagonals of the parallelogram be represented as: - \( \vec{AC} = 3\hat{i} + \hat{j} - 2\hat{k} \) - \( \vec{BD} = \hat{i} - 3\hat{j} + 4\hat{k} \) ### Step 2: Find the vectors representing the sides The diagonals of a parallelogram bisect each other. Therefore, we can express the vectors for the sides \( \vec{DA} \) and \( \vec{DC} \) in terms of the diagonals. Using the property of diagonals: \[ \vec{DA} + \vec{AO} = \vec{DO} \] Where \( O \) is the midpoint of both diagonals. ### Step 3: Express the vectors in terms of the diagonals We can express \( \vec{DA} \) as: \[ \vec{DA} = \vec{DO} - \vec{AO} \] Since \( \vec{DO} = \frac{1}{2} \vec{BD} \) and \( \vec{AO} = \frac{1}{2} \vec{AC} \), we can substitute: \[ \vec{DA} = \frac{1}{2} \vec{BD} - \frac{1}{2} \vec{AC} \] ### Step 4: Calculate \( \vec{DA} \) Substituting the values of \( \vec{AC} \) and \( \vec{BD} \): \[ \vec{DA} = \frac{1}{2} \left( \hat{i} - 3\hat{j} + 4\hat{k} \right) - \frac{1}{2} \left( 3\hat{i} + \hat{j} - 2\hat{k} \right) \] Calculating this: \[ \vec{DA} = \frac{1}{2} \left( \hat{i} - 3\hat{j} + 4\hat{k} - 3\hat{i} - \hat{j} + 2\hat{k} \right) \] \[ = \frac{1}{2} \left( (1 - 3)\hat{i} + (-3 - 1)\hat{j} + (4 + 2)\hat{k} \right) \] \[ = \frac{1}{2} \left( -2\hat{i} - 4\hat{j} + 6\hat{k} \right) \] \[ = -\hat{i} - 2\hat{j} + 3\hat{k} \] ### Step 5: Find the magnitude of \( \vec{DA} \) The magnitude of \( \vec{DA} \) is calculated as follows: \[ |\vec{DA}| = \sqrt{(-1)^2 + (-2)^2 + (3)^2} \] \[ = \sqrt{1 + 4 + 9} = \sqrt{14} \] ### Step 6: Calculate the other side \( \vec{DC} \) Using a similar approach for \( \vec{DC} \): \[ \vec{DC} = \vec{DO} + \vec{OC} \] Where \( \vec{OC} = \frac{1}{2} \vec{AC} \): \[ \vec{DC} = \frac{1}{2} \vec{BD} + \frac{1}{2} \vec{AC} \] Calculating this: \[ \vec{DC} = \frac{1}{2} \left( \hat{i} - 3\hat{j} + 4\hat{k} + 3\hat{i} + \hat{j} - 2\hat{k} \right) \] \[ = \frac{1}{2} \left( (1 + 3)\hat{i} + (-3 + 1)\hat{j} + (4 - 2)\hat{k} \right) \] \[ = \frac{1}{2} \left( 4\hat{i} - 2\hat{j} + 2\hat{k} \right) \] \[ = 2\hat{i} - \hat{j} + \hat{k} \] ### Step 7: Find the magnitude of \( \vec{DC} \) Calculating the magnitude: \[ |\vec{DC}| = \sqrt{(2)^2 + (-1)^2 + (1)^2} \] \[ = \sqrt{4 + 1 + 1} = \sqrt{6} \] ### Final Result The lengths of the sides of the parallelogram are: - Length of side \( DA \) = \( \sqrt{14} \) - Length of side \( DC \) = \( \sqrt{6} \)
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos
  • ALGEBRAIC INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|39 Videos

Similar Questions

Explore conceptually related problems

If the diagonals of a parallelogram are represented by the vectors 3hati + hatj -2hatk and hati + 3hatj -4hatk , then its area in square units , is

The sides of a parallelogram are 2 hati + 4 hatj -5 hatk and hati + 2 hatj + 3 hatk , then the unit vector parallel to one of the diagonals is

Vectors along the adjacent sides of parallelogram are veca = 2hati +4hatj -5hatk and vecb = hati + 2hatj +3hatk . Find the length of the longer diagonal of the parallelogram.

Area of a parallelogram, whose diagonals are 3hati+hatj-2hatk and hati-3hatj+4hatk will be:

Vectors along the adjacent sides of parallelogram are veca = hati +2hatj +hatk and vecb = 2hati + 4hatj +hatk . Find the length of the longer diagonal of the parallelogram.

Find the area of the parallelogram having diagonals 2hati-hatj+hatk and 3hati+3hatj-hatk

If a=2hati+2hatj-8hatk and b=hati+3hatj-4hatk , then the magnitude of a+b is equal to

The diagonals of as parallelogram are given by veca=3hati-4hatj-hatk and vecb=2hati+3hatj-6hatk Show that the parallelogram is as rhombus and determine the length of its sides.

The sides of a parallelogram are 2hati +4hatj -5hatk and hati + 2hatj +3hatk . The unit vector parallel to one of the diagonals is

If the vectors a hati + 3 hatj - 2 hatk and 3 hati - 4 hatj + b hatk are collinear, then (a,b) =

OBJECTIVE RD SHARMA ENGLISH-ALGEBRA OF VECTORS-Chapter Test
  1. If vec a , vec b , vec c are three non-zero vectors (no two of which ...

    Text Solution

    |

  2. Vectors vec aa n d vec b are non-collinear. Find for what value of ...

    Text Solution

    |

  3. If the diagonals of a parallelogram are 3 hati + hatj -2hatk and hati ...

    Text Solution

    |

  4. If ABCD is a quadrilateral, then vec(BA) + vec(BC)+vec(CD) + vec(DA)=

    Text Solution

    |

  5. The points with position vectors 60hati+3hatj,40hati-8hatj, ahati-52ha...

    Text Solution

    |

  6. If ABCDEF is a regualr hexagon, then vec(AC) + vec(AD) + vec(EA) + ve...

    Text Solution

    |

  7. In a regular hexagon ABCDEF, vec(AB)+vec(AC)+vec(AD)+vec(AE)+vec(AF)=k...

    Text Solution

    |

  8. If P, Q , R are the mid-points of the sides AB, BC and CA of Delta AB...

    Text Solution

    |

  9. If G is the centroid of the DeltaABC and if G' is the centroid of anot...

    Text Solution

    |

  10. In a quadrilateral ABCD, vec(AB) + vec(DC) =

    Text Solution

    |

  11. If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) +...

    Text Solution

    |

  12. If ABCD is a parallelogram, then vec(AC) - vec(BD) =

    Text Solution

    |

  13. In a Delta ABC, " if " vec(AB) = hati - 7hatj + hatk and vec(BC) = 3 ...

    Text Solution

    |

  14. If vectors vec(AB) = -3hati+ 4hatk and vec(AC) = 5hati -2hatj+4hatk ar...

    Text Solution

    |

  15. The position vectors of P and Q are respectively vec a and vec b . If ...

    Text Solution

    |

  16. If the points whose position vectors are 2hati + hatj + hatk , 6hati -...

    Text Solution

    |

  17. The ratio in which hati + 2 hatj + 3 hatk divides the join of -2hati ...

    Text Solution

    |

  18. If OACB is a parallelogrma with vec( OC) = vec(a) and vec( AB) = vec(...

    Text Solution

    |

  19. The position vectors of the points A, B, C are 2 hati + hatj - hatk , ...

    Text Solution

    |

  20. If ABCDEF is regular hexagon, then AD+EB+FC is

    Text Solution

    |