Home
Class 12
MATHS
If ABCD is a quadrilateral, then vec(BA)...

If ABCD is a quadrilateral, then `vec(BA) + vec(BC)+vec(CD) + vec(DA)=`

A

`2 vec(BA)`

B

`2 vec(AB)`

C

`2vec(AC)`

D

`2(BC)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression for the sum of the vectors in the quadrilateral ABCD, specifically: \[ \vec{BA} + \vec{BC} + \vec{CD} + \vec{DA} \] ### Step-by-Step Solution: 1. **Understanding the Vectors**: - We start by recognizing the vectors involved: - \(\vec{BA} = \vec{A} - \vec{B}\) - \(\vec{BC} = \vec{C} - \vec{B}\) - \(\vec{CD} = \vec{D} - \vec{C}\) - \(\vec{DA} = \vec{A} - \vec{D}\) 2. **Substituting the Vectors**: - Substitute the expressions for each vector into the equation: \[ \vec{BA} + \vec{BC} + \vec{CD} + \vec{DA} = (\vec{A} - \vec{B}) + (\vec{C} - \vec{B}) + (\vec{D} - \vec{C}) + (\vec{A} - \vec{D}) \] 3. **Rearranging the Terms**: - Now, we can rearrange the terms: \[ = \vec{A} - \vec{B} + \vec{C} - \vec{B} + \vec{D} - \vec{C} + \vec{A} - \vec{D} \] 4. **Combining Like Terms**: - Combine the like terms: \[ = \vec{A} + \vec{A} - \vec{B} - \vec{B} + \vec{C} - \vec{C} + \vec{D} - \vec{D} \] - This simplifies to: \[ = 2\vec{A} - 2\vec{B} \] 5. **Final Expression**: - We can factor out the common term: \[ = 2(\vec{A} - \vec{B}) = 2\vec{BA} \] ### Conclusion: Thus, the final result is: \[ \vec{BA} + \vec{BC} + \vec{CD} + \vec{DA} = 2\vec{BA} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos
  • ALGEBRAIC INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|39 Videos

Similar Questions

Explore conceptually related problems

If ABCD is a parallelogram, then vec(AC) - vec(BD) =

In a quadrilateral ABCD, vec(AB) + vec(DC) =

If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) + vec(ED) + vec(AC) is equal to

Let O be the centre of a regular pentagon ABCDE and vec(OA) = veca , then vec(AB) +vec(2BC) + vec(3CD) + vec(4DE) + vec(5EA) is equals:

Let O be the centre of a regular pentagon ABCDE and vec(OA) = veca , then vec(AB) +vec(2BC) + vec(3CD) + vec(4DE) + vec(5EA) is equals:

If ABCD is a rhombus whose diagonals intersect at E, then vec(EA) + vec(EB) + vec(EC) + vec( ED) equals

Assertion ABCDEF is a regular hexagon and vec(AB)=veca,vec(BC)=vecb and vec(CD)=vecc, then vec(EA) is equal to -(vecb+vecc) , Reason: vec(AE)=vec(BD)=vec(BC)+vec(CD) (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

if A,B,C,D and E are five coplanar points, then vec(DA) + vec( DB) + vec(DC ) + vec( AE) + vec( BE) + vec( CE) is equal to :

A B C D is quadrilateral such that vec A B= vec b , vec A D= vec d , vec A C=m vec b+p vec ddot Show that he area of the quadrilateral A B C Di s1/2|m+p|| vec bxx vec d|dot

In quadrilateral ABCD, vec(AB)=veca, vec(BC)=vecb, vec(AD)=vecb-veca If M is the mid point of BC and N is a point on DM such that DN=4/5 DM , then vec(AN)=

OBJECTIVE RD SHARMA ENGLISH-ALGEBRA OF VECTORS-Chapter Test
  1. Vectors vec aa n d vec b are non-collinear. Find for what value of ...

    Text Solution

    |

  2. If the diagonals of a parallelogram are 3 hati + hatj -2hatk and hati ...

    Text Solution

    |

  3. If ABCD is a quadrilateral, then vec(BA) + vec(BC)+vec(CD) + vec(DA)=

    Text Solution

    |

  4. The points with position vectors 60hati+3hatj,40hati-8hatj, ahati-52ha...

    Text Solution

    |

  5. If ABCDEF is a regualr hexagon, then vec(AC) + vec(AD) + vec(EA) + ve...

    Text Solution

    |

  6. In a regular hexagon ABCDEF, vec(AB)+vec(AC)+vec(AD)+vec(AE)+vec(AF)=k...

    Text Solution

    |

  7. If P, Q , R are the mid-points of the sides AB, BC and CA of Delta AB...

    Text Solution

    |

  8. If G is the centroid of the DeltaABC and if G' is the centroid of anot...

    Text Solution

    |

  9. In a quadrilateral ABCD, vec(AB) + vec(DC) =

    Text Solution

    |

  10. If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) +...

    Text Solution

    |

  11. If ABCD is a parallelogram, then vec(AC) - vec(BD) =

    Text Solution

    |

  12. In a Delta ABC, " if " vec(AB) = hati - 7hatj + hatk and vec(BC) = 3 ...

    Text Solution

    |

  13. If vectors vec(AB) = -3hati+ 4hatk and vec(AC) = 5hati -2hatj+4hatk ar...

    Text Solution

    |

  14. The position vectors of P and Q are respectively vec a and vec b . If ...

    Text Solution

    |

  15. If the points whose position vectors are 2hati + hatj + hatk , 6hati -...

    Text Solution

    |

  16. The ratio in which hati + 2 hatj + 3 hatk divides the join of -2hati ...

    Text Solution

    |

  17. If OACB is a parallelogrma with vec( OC) = vec(a) and vec( AB) = vec(...

    Text Solution

    |

  18. The position vectors of the points A, B, C are 2 hati + hatj - hatk , ...

    Text Solution

    |

  19. If ABCDEF is regular hexagon, then AD+EB+FC is

    Text Solution

    |

  20. If the points with position vectors 20 hati + p hatj , 5 hati - hat...

    Text Solution

    |