Home
Class 12
MATHS
If ABCDEF is a regualr hexagon, then ve...

If ABCDEF is a regualr hexagon, then `vec(AC) + vec(AD) + vec(EA) + vec(FA)=`

A

`2 vec(AB)`

B

`3 vec (AB)`

C

`vec(AB)`

D

`vec0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \( \vec{AC} + \vec{AD} + \vec{EA} + \vec{FA} \) for a regular hexagon ABCDEF. Let's break it down step by step. ### Step 1: Define the Vectors We start by defining the vectors for the sides of the hexagon. Let: - \( \vec{AB} = \vec{a} \) - \( \vec{BC} = \vec{b} \) In a regular hexagon, all sides are equal, and the angles between adjacent sides are \( 120^\circ \). ### Step 2: Calculate \( \vec{AC} \) The vector \( \vec{AC} \) can be expressed as: \[ \vec{AC} = \vec{AB} + \vec{BC} = \vec{a} + \vec{b} \] ### Step 3: Calculate \( \vec{AD} \) In a regular hexagon, the vector \( \vec{AD} \) can be calculated as: \[ \vec{AD} = 2\vec{b} \] This is because \( \vec{AD} \) spans two sides of the hexagon. ### Step 4: Calculate \( \vec{EA} \) The vector \( \vec{EA} \) can be expressed as: \[ \vec{EA} = -\vec{b} - \vec{b} = -2\vec{b} \] This is because \( \vec{EA} \) goes in the opposite direction of \( \vec{BC} \) and \( \vec{CD} \). ### Step 5: Calculate \( \vec{FA} \) The vector \( \vec{FA} \) can be expressed as: \[ \vec{FA} = -(\vec{b} - \vec{a}) = \vec{a} - \vec{b} \] This is because \( \vec{FA} \) is in the opposite direction of \( \vec{CD} \). ### Step 6: Substitute Values into the Expression Now we substitute the values we found into the expression: \[ \vec{AC} + \vec{AD} + \vec{EA} + \vec{FA} = (\vec{a} + \vec{b}) + (2\vec{b}) + (-2\vec{b}) + (\vec{a} - \vec{b}) \] ### Step 7: Simplify the Expression Now we simplify the expression: \[ = \vec{a} + \vec{b} + 2\vec{b} - 2\vec{b} + \vec{a} - \vec{b} \] Combining like terms: \[ = 2\vec{a} + 0\vec{b} = 2\vec{a} \] ### Final Answer Thus, the final result is: \[ \vec{AC} + \vec{AD} + \vec{EA} + \vec{FA} = 2\vec{a} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos
  • ALGEBRAIC INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|39 Videos

Similar Questions

Explore conceptually related problems

If ABCDEF is a regular hexagon, prove that vec(AC)+vec(AD)+vec(EA)+vec(FA)=3vec(AB)

If ABCDEF is a regular hexagon then vec(AD)+vec(EB)+vec(FC) equals :

If ABCDEF is a regular hexagon then vec(AD)+vec(EB)+vec(FC) equals :

If ABCDEF is a regular hexagon with vec(AB) = veca and vec(BC)= vecb, then vec(CE) equals

If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) + vec(ED) + vec(AC) is equal to

If ABCD is a parallelogram, then vec(AC) - vec(BD) =

In a regular hexagon ABCDEF, vec(AE)

ABCDEF is a regular hexagon. Find the vector vec AB + vec AC + vec AD + vec AE + vec AF in terms of the vector vec AD

Assertion ABCDEF is a regular hexagon and vec(AB)=veca,vec(BC)=vecb and vec(CD)=vecc, then vec(EA) is equal to -(vecb+vecc) , Reason: vec(AE)=vec(BD)=vec(BC)+vec(CD) (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

In a regular hexagon ABCDEF, prove that vec(AB)+vec(AC)+vec(AD)+vec(AE)+vec(AF)=3vec(AD)

OBJECTIVE RD SHARMA ENGLISH-ALGEBRA OF VECTORS-Chapter Test
  1. If ABCD is a quadrilateral, then vec(BA) + vec(BC)+vec(CD) + vec(DA)=

    Text Solution

    |

  2. The points with position vectors 60hati+3hatj,40hati-8hatj, ahati-52ha...

    Text Solution

    |

  3. If ABCDEF is a regualr hexagon, then vec(AC) + vec(AD) + vec(EA) + ve...

    Text Solution

    |

  4. In a regular hexagon ABCDEF, vec(AB)+vec(AC)+vec(AD)+vec(AE)+vec(AF)=k...

    Text Solution

    |

  5. If P, Q , R are the mid-points of the sides AB, BC and CA of Delta AB...

    Text Solution

    |

  6. If G is the centroid of the DeltaABC and if G' is the centroid of anot...

    Text Solution

    |

  7. In a quadrilateral ABCD, vec(AB) + vec(DC) =

    Text Solution

    |

  8. If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) +...

    Text Solution

    |

  9. If ABCD is a parallelogram, then vec(AC) - vec(BD) =

    Text Solution

    |

  10. In a Delta ABC, " if " vec(AB) = hati - 7hatj + hatk and vec(BC) = 3 ...

    Text Solution

    |

  11. If vectors vec(AB) = -3hati+ 4hatk and vec(AC) = 5hati -2hatj+4hatk ar...

    Text Solution

    |

  12. The position vectors of P and Q are respectively vec a and vec b . If ...

    Text Solution

    |

  13. If the points whose position vectors are 2hati + hatj + hatk , 6hati -...

    Text Solution

    |

  14. The ratio in which hati + 2 hatj + 3 hatk divides the join of -2hati ...

    Text Solution

    |

  15. If OACB is a parallelogrma with vec( OC) = vec(a) and vec( AB) = vec(...

    Text Solution

    |

  16. The position vectors of the points A, B, C are 2 hati + hatj - hatk , ...

    Text Solution

    |

  17. If ABCDEF is regular hexagon, then AD+EB+FC is

    Text Solution

    |

  18. If the points with position vectors 20 hati + p hatj , 5 hati - hat...

    Text Solution

    |

  19. If the position vector of a point A is vec a + 2 vec b and vec a divi...

    Text Solution

    |

  20. If vec a ,\ vec b ,\ vec c and vec d are the position vectors of p...

    Text Solution

    |