Home
Class 12
MATHS
In a regular hexagon ABCDEF, vec(AB)+vec...

In a regular hexagon ABCDEF, `vec(AB)+vec(AC)+vec(AD)+vec(AE)+vec(AF)=kvec(AD)`, where k is equal to

A

`3 vec(AG)`

B

`2 vec(AG)`

C

`6 vec(AG)`

D

`4 vec(AG)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos
  • ALGEBRAIC INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|39 Videos

Similar Questions

Explore conceptually related problems

In a regular hexagon ABCDEF, vec(AE)

In a regular hexagon ABCDEF, prove that vec(AB)+vec(AC)+vec(AD)+vec(AE)+vec(AF)=3vec(AD)

In a regular hexagon ABCDEF, bar(AB) + bar(AC)+bar(AD)+ bar(AE) + bar(AF)=k bar(AD) then k is equal to

If ABCDEF is a regular hexagon, prove that vec(AC)+vec(AD)+vec(EA)+vec(FA)=3vec(AB)

If ABCDEF is a regualr hexagon, then vec(AC) + vec(AD) + vec(EA) + vec(FA)=

Assertion ABCDEF is a regular hexagon and vec(AB)=veca,vec(BC)=vecb and vec(CD)=vecc, then vec(EA) is equal to -(vecb+vecc) , Reason: vec(AE)=vec(BD)=vec(BC)+vec(CD) (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) + vec(ED) + vec(AC) is equal to

Let O be the centre of the regular hexagon ABCDEF then find vec(OA)+vec(OB)+vec(OD)+vec(OC)+vec(OE)+vec(OF)

Let B_1,C_1 and D_1 are points on AB,AC and AD of the parallelogram ABCD, such that vec(AB_1)=k_1vec(AC,) vec(AC_1)=k_2vec(AC) and vec(AD_1)=k_2 vec(AD,) where k_1,k_2 and k_3 are scalar.

Let O be the centre of a regular pentagon ABCDE and vec(OA) = veca , then vec(AB) +vec(2BC) + vec(3CD) + vec(4DE) + vec(5EA) is equals:

OBJECTIVE RD SHARMA ENGLISH-ALGEBRA OF VECTORS-Chapter Test
  1. The points with position vectors 60hati+3hatj,40hati-8hatj, ahati-52ha...

    Text Solution

    |

  2. If ABCDEF is a regualr hexagon, then vec(AC) + vec(AD) + vec(EA) + ve...

    Text Solution

    |

  3. In a regular hexagon ABCDEF, vec(AB)+vec(AC)+vec(AD)+vec(AE)+vec(AF)=k...

    Text Solution

    |

  4. If P, Q , R are the mid-points of the sides AB, BC and CA of Delta AB...

    Text Solution

    |

  5. If G is the centroid of the DeltaABC and if G' is the centroid of anot...

    Text Solution

    |

  6. In a quadrilateral ABCD, vec(AB) + vec(DC) =

    Text Solution

    |

  7. If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) +...

    Text Solution

    |

  8. If ABCD is a parallelogram, then vec(AC) - vec(BD) =

    Text Solution

    |

  9. In a Delta ABC, " if " vec(AB) = hati - 7hatj + hatk and vec(BC) = 3 ...

    Text Solution

    |

  10. If vectors vec(AB) = -3hati+ 4hatk and vec(AC) = 5hati -2hatj+4hatk ar...

    Text Solution

    |

  11. The position vectors of P and Q are respectively vec a and vec b . If ...

    Text Solution

    |

  12. If the points whose position vectors are 2hati + hatj + hatk , 6hati -...

    Text Solution

    |

  13. The ratio in which hati + 2 hatj + 3 hatk divides the join of -2hati ...

    Text Solution

    |

  14. If OACB is a parallelogrma with vec( OC) = vec(a) and vec( AB) = vec(...

    Text Solution

    |

  15. The position vectors of the points A, B, C are 2 hati + hatj - hatk , ...

    Text Solution

    |

  16. If ABCDEF is regular hexagon, then AD+EB+FC is

    Text Solution

    |

  17. If the points with position vectors 20 hati + p hatj , 5 hati - hat...

    Text Solution

    |

  18. If the position vector of a point A is vec a + 2 vec b and vec a divi...

    Text Solution

    |

  19. If vec a ,\ vec b ,\ vec c and vec d are the position vectors of p...

    Text Solution

    |

  20. Let G be the centroid of Delta ABC , If vec(AB) = vec a , vec(AC) = v...

    Text Solution

    |