Home
Class 12
MATHS
If P, Q , R are the mid-points of the s...

If P, Q , R are the mid-points of the sides AB, BC and CA of `Delta ABC` and O is point whithin the triangle, then `vec (OA) + vec(OB) + vec( OC) =`

A

`2(vec(OP)+vec(OQ) + vec(OR))`

B

`vec(OP)+vec(OQ) + vec(OR)`

C

`4(vec(OP)+vec(OQ) + vec(OR))`

D

`6(vec(OP)+vec(OQ) + vec(OR))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression for \( \vec{OA} + \vec{OB} + \vec{OC} \) where \( O \) is a point within triangle \( ABC \) and \( P, Q, R \) are the midpoints of sides \( AB, BC, \) and \( CA \) respectively. ### Step-by-Step Solution: 1. **Define the Position Vectors**: Let the position vectors of points \( A, B, C \) be represented as \( \vec{A}, \vec{B}, \vec{C} \). The position vector of point \( O \) is \( \vec{O} \). 2. **Express the Vectors**: The vectors from point \( O \) to points \( A, B, C \) can be expressed as: \[ \vec{OA} = \vec{A} - \vec{O}, \quad \vec{OB} = \vec{B} - \vec{O}, \quad \vec{OC} = \vec{C} - \vec{O} \] 3. **Sum the Vectors**: Now, we can sum these vectors: \[ \vec{OA} + \vec{OB} + \vec{OC} = (\vec{A} - \vec{O}) + (\vec{B} - \vec{O}) + (\vec{C} - \vec{O}) \] 4. **Combine Like Terms**: Combine the terms: \[ \vec{OA} + \vec{OB} + \vec{OC} = \vec{A} + \vec{B} + \vec{C} - 3\vec{O} \] 5. **Final Expression**: Thus, we can express the result as: \[ \vec{OA} + \vec{OB} + \vec{OC} = \vec{A} + \vec{B} + \vec{C} - 3\vec{O} \] ### Conclusion: The final result for \( \vec{OA} + \vec{OB} + \vec{OC} \) is: \[ \vec{OA} + \vec{OB} + \vec{OC} = \vec{A} + \vec{B} + \vec{C} - 3\vec{O} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos
  • ALGEBRAIC INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|39 Videos

Similar Questions

Explore conceptually related problems

D, E and F are the mid-points of the sides BC, CA and AB respectively of Delta ABC and G is the centroid of the triangle, then vec(GD) + vec(GE) + vec(GF) =

If O is a point in space, A B C is a triangle and D , E , F are the mid-points of the sides B C ,C A and A B respectively of the triangle, prove that vec O A + vec O B+ vec O C= vec O D+ vec O E+ vec O Fdot

If O is a point in space, A B C is a triangle and D , E , F are the mid-points of the sides B C ,C A and A B respectively of the triangle, prove that vec O A + vec O B+ vec O C= vec O D+ vec O E+ vec O Fdot

If D,E and F are the mid-points of the sides BC, CA and AB respectively of a triangle ABC and lambda is scalar, such that vec(AD) + 2/3vec(BE)+1/3vec(CF)=lambdavec(AC) , then lambda is equal to

If D , E and F are the mid-points of the sides BC , CA and AB respectively of the DeltaABC and O be any point, then prove that OA+OB+OC=OD+OE+OF

D and E are the mid-points of the sides AB and AC of Delta ABC and O is any point on side BC. O is joined to A. If P and Q are the mid-points of OB and OC respectively, then DEQP is Option1 a square Option2 a rectangle Option3 a rhombus Option4 a parallelogram

If D ,\ E ,\ F are the mid points of the side B C ,\ C A and A B respectively of a triangle ABC, write the value of vec A D+ vec B E+ vec C Fdot

Let O, O' and G be the circumcentre, orthocentre and centroid of a Delta ABC and S be any point in the plane of the triangle. Statement -1: vec(O'A) + vec(O'B) + vec(O'C)=2vec(O'O) Statement -2: vec(SA) + vec(SB) + vec(SC) = 3 vec(SG)

D, E and F are the mid-points of the sides AB, BC and CA of an isosceles triangle ABC in which AB = BC. Prove that DeltaDEF is also isosceles.

If G is the centroid of Delta ABC and G' is the centroid of Delta A' B' C' " then " vec(A A)' + vec(B B)' + vec(C C)' =

OBJECTIVE RD SHARMA ENGLISH-ALGEBRA OF VECTORS-Chapter Test
  1. If ABCDEF is a regualr hexagon, then vec(AC) + vec(AD) + vec(EA) + ve...

    Text Solution

    |

  2. In a regular hexagon ABCDEF, vec(AB)+vec(AC)+vec(AD)+vec(AE)+vec(AF)=k...

    Text Solution

    |

  3. If P, Q , R are the mid-points of the sides AB, BC and CA of Delta AB...

    Text Solution

    |

  4. If G is the centroid of the DeltaABC and if G' is the centroid of anot...

    Text Solution

    |

  5. In a quadrilateral ABCD, vec(AB) + vec(DC) =

    Text Solution

    |

  6. If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) +...

    Text Solution

    |

  7. If ABCD is a parallelogram, then vec(AC) - vec(BD) =

    Text Solution

    |

  8. In a Delta ABC, " if " vec(AB) = hati - 7hatj + hatk and vec(BC) = 3 ...

    Text Solution

    |

  9. If vectors vec(AB) = -3hati+ 4hatk and vec(AC) = 5hati -2hatj+4hatk ar...

    Text Solution

    |

  10. The position vectors of P and Q are respectively vec a and vec b . If ...

    Text Solution

    |

  11. If the points whose position vectors are 2hati + hatj + hatk , 6hati -...

    Text Solution

    |

  12. The ratio in which hati + 2 hatj + 3 hatk divides the join of -2hati ...

    Text Solution

    |

  13. If OACB is a parallelogrma with vec( OC) = vec(a) and vec( AB) = vec(...

    Text Solution

    |

  14. The position vectors of the points A, B, C are 2 hati + hatj - hatk , ...

    Text Solution

    |

  15. If ABCDEF is regular hexagon, then AD+EB+FC is

    Text Solution

    |

  16. If the points with position vectors 20 hati + p hatj , 5 hati - hat...

    Text Solution

    |

  17. If the position vector of a point A is vec a + 2 vec b and vec a divi...

    Text Solution

    |

  18. If vec a ,\ vec b ,\ vec c and vec d are the position vectors of p...

    Text Solution

    |

  19. Let G be the centroid of Delta ABC , If vec(AB) = vec a , vec(AC) = v...

    Text Solution

    |

  20. If G is the intersection of diagonals of a parallelogram A B C D and O...

    Text Solution

    |