Home
Class 12
MATHS
In a quadrilateral ABCD, vec(AB) + vec(D...

In a quadrilateral ABCD, `vec(AB) + vec(DC) =`

A

`vec(AB) + vec(CB)`

B

`vec(AC) + vec(BD)`

C

`vec(AC) + vec(DB)`

D

`vec(AD) - vec(CB)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding `vec(AB) + vec(DC)` in the quadrilateral ABCD, we can use the properties of vectors and the relationships between the points in the quadrilateral. Here’s a step-by-step solution: ### Step 1: Define the Position Vectors Let: - \( \vec{A} \) be the position vector of point A - \( \vec{B} \) be the position vector of point B - \( \vec{C} \) be the position vector of point C - \( \vec{D} \) be the position vector of point D ### Step 2: Express Vectors AB and DC The vector \( \vec{AB} \) can be expressed as: \[ \vec{AB} = \vec{B} - \vec{A} \] Similarly, the vector \( \vec{DC} \) can be expressed as: \[ \vec{DC} = \vec{C} - \vec{D} \] ### Step 3: Add the Two Vectors Now, we need to find \( \vec{AB} + \vec{DC} \): \[ \vec{AB} + \vec{DC} = (\vec{B} - \vec{A}) + (\vec{C} - \vec{D}) \] ### Step 4: Simplify the Expression Combine the terms: \[ \vec{AB} + \vec{DC} = \vec{B} - \vec{A} + \vec{C} - \vec{D} \] Rearranging gives: \[ \vec{AB} + \vec{DC} = (\vec{B} + \vec{C}) - (\vec{A} + \vec{D}) \] ### Step 5: Conclusion Thus, we can conclude that: \[ \vec{AB} + \vec{DC} = \vec{B} + \vec{C} - \vec{A} - \vec{D} \] This expression shows the relationship between the vectors in quadrilateral ABCD.
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos
  • ALGEBRAIC INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|39 Videos

Similar Questions

Explore conceptually related problems

In quadrilateral ABCD, vec(AB)=veca, vec(BC)=vecb, vec(AD)=vecb-veca If M is the mid point of BC and N is a point on DM such that DN=4/5 DM , then vec(AN)=

ABCD is a quadrilateral with vec(AB) = veca, vec(AD) = vecb and vec(AC)=2veca+3vecb. If its area is alpha times the area of the parallelogram with AB and AD as adjacent sides, then alpha=

In a quadrilateral ABCD angle B = angle D = 90 ^(@) Prove that : 2AC^(2) - BC^(2) = AB^(2) + AD^(2) +DC^(2)

If ABCD is a quadrilateral, then vec(BA) + vec(BC)+vec(CD) + vec(DA)=

In quadrilateral ABCD, AB=DC and AD=BC. Prove that the sides AB and DC are parallel to each other.

Two forces vec A B and vec A D are acting at vertex A of a quadrilateral ABCD and two forces vec C B and vec C D at C prove that their resultant is given by 4 vec E F , where E and F are the midpoints of AC and BD, respectively.

Two forces vec A B and vec A D are acting at vertex A of a quadrilateral ABCD and two forces vec C B and vec C D at C prove that their resultant is given by 4 vec E F , where E and F are the midpoints of AC and BD, respectively.

If vec a , vec b , vec ca n d vec d are the position vectors of the vertices of a cyclic quadrilateral A B C D , prove that (| vec axx vec b+ vec bxx vec d+ vec d xx vec a|)/(( vec b- vec a)dot( vec d- vec a))+(| vec bxx vec c+ vec cxx vec d+ vec d xx vec b|)/(( vec b- vec c)dot( vec d- vec c))=0dot

In quadrilateral ABCD, side AB is parallel to side DC. If angleA : angle D=1:2 and angleC: angleB=4:5 . (i) Calculate each angle of the quadrilateral. (ii) Assign a special name to quadrialateral ABCD.

In quadrilateral ABCD, AB is the shortest side and DC is the longest side. Prove that : (i) angleB gt angleD (ii) angleA gt angleC

OBJECTIVE RD SHARMA ENGLISH-ALGEBRA OF VECTORS-Chapter Test
  1. If P, Q , R are the mid-points of the sides AB, BC and CA of Delta AB...

    Text Solution

    |

  2. If G is the centroid of the DeltaABC and if G' is the centroid of anot...

    Text Solution

    |

  3. In a quadrilateral ABCD, vec(AB) + vec(DC) =

    Text Solution

    |

  4. If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) +...

    Text Solution

    |

  5. If ABCD is a parallelogram, then vec(AC) - vec(BD) =

    Text Solution

    |

  6. In a Delta ABC, " if " vec(AB) = hati - 7hatj + hatk and vec(BC) = 3 ...

    Text Solution

    |

  7. If vectors vec(AB) = -3hati+ 4hatk and vec(AC) = 5hati -2hatj+4hatk ar...

    Text Solution

    |

  8. The position vectors of P and Q are respectively vec a and vec b . If ...

    Text Solution

    |

  9. If the points whose position vectors are 2hati + hatj + hatk , 6hati -...

    Text Solution

    |

  10. The ratio in which hati + 2 hatj + 3 hatk divides the join of -2hati ...

    Text Solution

    |

  11. If OACB is a parallelogrma with vec( OC) = vec(a) and vec( AB) = vec(...

    Text Solution

    |

  12. The position vectors of the points A, B, C are 2 hati + hatj - hatk , ...

    Text Solution

    |

  13. If ABCDEF is regular hexagon, then AD+EB+FC is

    Text Solution

    |

  14. If the points with position vectors 20 hati + p hatj , 5 hati - hat...

    Text Solution

    |

  15. If the position vector of a point A is vec a + 2 vec b and vec a divi...

    Text Solution

    |

  16. If vec a ,\ vec b ,\ vec c and vec d are the position vectors of p...

    Text Solution

    |

  17. Let G be the centroid of Delta ABC , If vec(AB) = vec a , vec(AC) = v...

    Text Solution

    |

  18. If G is the intersection of diagonals of a parallelogram A B C D and O...

    Text Solution

    |

  19. The vector cos alpha cos beta hati + cos alpha sin beta hatj + sin a...

    Text Solution

    |

  20. In a regular hexagon A B C D E F ,\ A vec B=a ,\ B vec C= vec b\ a n d...

    Text Solution

    |