Home
Class 12
MATHS
If ABCDE is a pentagon, then vec(AB) +...

If ABCDE is a pentagon, then
`vec(AB) + vec(AE) + vec(BC) + vec(DC) + vec(ED) + vec(AC) ` is equal to

A

`4 vec(AC)`

B

`2 vec(AC)`

C

`3vec(AC)`

D

`5 vec(AC)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the vectors given in the pentagon ABCDE and simplify the expression: \[ \vec{AB} + \vec{AE} + \vec{BC} + \vec{DC} + \vec{ED} + \vec{AC} \] ### Step 1: Understand the vectors in the pentagon The pentagon ABCDE consists of the following sides: - \(\vec{AB}\) from A to B - \(\vec{AE}\) from A to E - \(\vec{BC}\) from B to C - \(\vec{DC}\) from D to C - \(\vec{ED}\) from E to D - \(\vec{AC}\) from A to C ### Step 2: Rearranging the vectors We can rearrange the vectors in a way that groups them logically. We can express the vectors in terms of the segments that connect the points A, B, C, D, and E. \[ \vec{AB} + \vec{AE} + \vec{BC} + \vec{DC} + \vec{ED} + \vec{AC} = \vec{AB} + \vec{AE} + \vec{AC} + \vec{BC} + \vec{DC} + \vec{ED} \] ### Step 3: Combine vectors Notice that we can combine some vectors based on their connections: - \(\vec{AB} + \vec{BC} = \vec{AC}\) - \(\vec{AE} + \vec{ED} + \vec{DC}\) can also be rearranged to form paths that connect back to point A. ### Step 4: Form triangles We can visualize the arrangement of these vectors. The vectors \(\vec{AB}\) and \(\vec{AC}\) can be seen as forming a triangle with point B. Similarly, \(\vec{AE}\), \(\vec{ED}\), and \(\vec{DC}\) can form another triangle with point D. ### Step 5: Final simplification From the rearrangement and combination of vectors, we can conclude that: \[ \vec{AB} + \vec{AE} + \vec{BC} + \vec{DC} + \vec{ED} + \vec{AC} = 3 \vec{AC} \] ### Conclusion Thus, the expression simplifies to: \[ \vec{AB} + \vec{AE} + \vec{BC} + \vec{DC} + \vec{ED} + \vec{AC} = 3 \vec{AC} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos
  • ALGEBRAIC INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|39 Videos

Similar Questions

Explore conceptually related problems

If ABCD is a quadrilateral, then vec(BA) + vec(BC)+vec(CD) + vec(DA)=

If ABCD is a parallelogram, then vec(AC) - vec(BD) =

if A,B,C,D and E are five coplanar points, then vec(DA) + vec( DB) + vec(DC ) + vec( AE) + vec( BE) + vec( CE) is equal to :

A B C D E is pentagon, prove that vec A B + vec B C + vec C D + vec D E+ vec E A = vec0

Let O be the centre of a regular pentagon ABCDE and vec(OA) = veca , then vec(AB) +vec(2BC) + vec(3CD) + vec(4DE) + vec(5EA) is equals:

Let O be the centre of a regular pentagon ABCDE and vec(OA) = veca , then vec(AB) +vec(2BC) + vec(3CD) + vec(4DE) + vec(5EA) is equals:

If in a right-angled triangle A B C , the hypotenuse A B=p ,then vec(AB).vec(AC)+ vec(BC). vec(BA)+ vec(CA).vec(CB) is equal to 2p^2 b. (p^2)/2 c. p^2 d. none of these

If ABCDEF is a regular hexagon with vec(AB) = veca and vec(BC)= vecb, then vec(CE) equals

If OACB is a parallelogrma with vec( OC) = vec(a) and vec( AB) = vec(b) then vec(OA) is equal to

vec(A) xx vec(B) not equal to vec(B) xx vec(A) . Why?

OBJECTIVE RD SHARMA ENGLISH-ALGEBRA OF VECTORS-Chapter Test
  1. If G is the centroid of the DeltaABC and if G' is the centroid of anot...

    Text Solution

    |

  2. In a quadrilateral ABCD, vec(AB) + vec(DC) =

    Text Solution

    |

  3. If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) +...

    Text Solution

    |

  4. If ABCD is a parallelogram, then vec(AC) - vec(BD) =

    Text Solution

    |

  5. In a Delta ABC, " if " vec(AB) = hati - 7hatj + hatk and vec(BC) = 3 ...

    Text Solution

    |

  6. If vectors vec(AB) = -3hati+ 4hatk and vec(AC) = 5hati -2hatj+4hatk ar...

    Text Solution

    |

  7. The position vectors of P and Q are respectively vec a and vec b . If ...

    Text Solution

    |

  8. If the points whose position vectors are 2hati + hatj + hatk , 6hati -...

    Text Solution

    |

  9. The ratio in which hati + 2 hatj + 3 hatk divides the join of -2hati ...

    Text Solution

    |

  10. If OACB is a parallelogrma with vec( OC) = vec(a) and vec( AB) = vec(...

    Text Solution

    |

  11. The position vectors of the points A, B, C are 2 hati + hatj - hatk , ...

    Text Solution

    |

  12. If ABCDEF is regular hexagon, then AD+EB+FC is

    Text Solution

    |

  13. If the points with position vectors 20 hati + p hatj , 5 hati - hat...

    Text Solution

    |

  14. If the position vector of a point A is vec a + 2 vec b and vec a divi...

    Text Solution

    |

  15. If vec a ,\ vec b ,\ vec c and vec d are the position vectors of p...

    Text Solution

    |

  16. Let G be the centroid of Delta ABC , If vec(AB) = vec a , vec(AC) = v...

    Text Solution

    |

  17. If G is the intersection of diagonals of a parallelogram A B C D and O...

    Text Solution

    |

  18. The vector cos alpha cos beta hati + cos alpha sin beta hatj + sin a...

    Text Solution

    |

  19. In a regular hexagon A B C D E F ,\ A vec B=a ,\ B vec C= vec b\ a n d...

    Text Solution

    |

  20. If three points A, B and C have position vectors hati + x hatj + 3 ha...

    Text Solution

    |