Home
Class 12
MATHS
In a Delta ABC, " if " vec(AB) = hati -...

In a `Delta ABC, " if " vec(AB) = hati - 7hatj + hatk and vec(BC) = 3 hatj + hatj + 2 hatk, " then " | vec(CA)|=`

A

`sqrt(61)`

B

`sqrt(52)`

C

`sqrt(51)`

D

`sqrt(41)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the magnitude of the vector \(\vec{CA}\) in triangle \(ABC\) given the vectors \(\vec{AB}\) and \(\vec{BC}\). ### Step-by-step Solution: 1. **Identify the Given Vectors:** - \(\vec{AB} = \hat{i} - 7\hat{j} + \hat{k}\) - \(\vec{BC} = \hat{i} + \hat{j} + 2\hat{k}\) 2. **Use the Triangle Law of Vectors:** According to the triangle law, we have: \[ \vec{AC} = \vec{AB} + \vec{BC} \] Therefore, we can express \(\vec{CA}\) as: \[ \vec{CA} = -\vec{AC} \] 3. **Calculate \(\vec{AC}\):** Substitute the values of \(\vec{AB}\) and \(\vec{BC}\): \[ \vec{AC} = (\hat{i} - 7\hat{j} + \hat{k}) + (\hat{i} + \hat{j} + 2\hat{k}) \] 4. **Combine the Vectors:** Now, combine the components: - For \(\hat{i}\): \(1 + 1 = 2\) - For \(\hat{j}\): \(-7 + 1 = -6\) - For \(\hat{k}\): \(1 + 2 = 3\) Thus, \[ \vec{AC} = 2\hat{i} - 6\hat{j} + 3\hat{k} \] 5. **Find \(\vec{CA}\):** Now, we can find \(\vec{CA}\): \[ \vec{CA} = -\vec{AC} = -2\hat{i} + 6\hat{j} - 3\hat{k} \] 6. **Calculate the Magnitude of \(\vec{CA}\):** The magnitude of a vector \(\vec{v} = a\hat{i} + b\hat{j} + c\hat{k}\) is given by: \[ |\vec{v}| = \sqrt{a^2 + b^2 + c^2} \] For \(\vec{CA} = -2\hat{i} + 6\hat{j} - 3\hat{k}\): \[ |\vec{CA}| = \sqrt{(-2)^2 + 6^2 + (-3)^2} \] 7. **Calculate Each Component's Square:** - \((-2)^2 = 4\) - \(6^2 = 36\) - \((-3)^2 = 9\) Therefore, \[ |\vec{CA}| = \sqrt{4 + 36 + 9} = \sqrt{49} = 7 \] ### Final Answer: \[ |\vec{CA}| = 7 \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos
  • ALGEBRAIC INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|39 Videos

Similar Questions

Explore conceptually related problems

The vector vec c , directed along the internal bisector of the angle between the vectors vec a = 7 hati - 4 hatj - 4hatk and vecb = -2hati - hatj + 2 hatk " with " |vec c| = 5 sqrt(6), is

If vecF = 3hati + 4hatj+5hatk and vecS=6hati +2hatj+5hatk , the find the work done.

Given two vectors veca=-hati + 2hatj + 2hatk and vecb =- 2hati + hatj + 2hatk find |vec a xx vec b|

ABCD is a parallelogram with vec(AC) = hati - 2hatj + hatk and vec(BD) = -hati + 2hatj - 5hatk . Area of this parallelogram is equal to:

If vec r = 3 hati + 2 hatj - 5 hatk , vec a= 2 hati - hatj + hatk, vec b = hati + 3 hatj - 2hatk and vec c=-2 hati + hatj - 3 hatk " such that " hat r = x vec a +y vec b + z vec c then

Find |vecaxxvecb| , if veca=2hati-7hatj+7hatk and vecb=3hati-2hatj+2hatk

If vector vec a = hati + hatj + hatk , vecb = 4 hati + 3 hatj + 4 hatk and vec c = hati + alpha hatj + beta hatk are linearly dependent and | vec c | = sqrt3 , then value of | alpha | + | beta | is

if A = 2hati - 3hatj+7hatk, B = hati + 2hatj and C=hatj - hatk . Find A(BxxC)

if A = 2hati - 3hatj+7hatk, B = hati + 2hatj and C=hatj - hatk . Find A(BxxC)

If in parallelogram ABCD, diagonal vectors are vec(AC)=2hati+3hatj+4hatk and vec(BD)=-6hati+7hatj-2hatk , then find the adjacent side vectors vec(AB) and vec(AD) .

OBJECTIVE RD SHARMA ENGLISH-ALGEBRA OF VECTORS-Chapter Test
  1. In a quadrilateral ABCD, vec(AB) + vec(DC) =

    Text Solution

    |

  2. If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) +...

    Text Solution

    |

  3. If ABCD is a parallelogram, then vec(AC) - vec(BD) =

    Text Solution

    |

  4. In a Delta ABC, " if " vec(AB) = hati - 7hatj + hatk and vec(BC) = 3 ...

    Text Solution

    |

  5. If vectors vec(AB) = -3hati+ 4hatk and vec(AC) = 5hati -2hatj+4hatk ar...

    Text Solution

    |

  6. The position vectors of P and Q are respectively vec a and vec b . If ...

    Text Solution

    |

  7. If the points whose position vectors are 2hati + hatj + hatk , 6hati -...

    Text Solution

    |

  8. The ratio in which hati + 2 hatj + 3 hatk divides the join of -2hati ...

    Text Solution

    |

  9. If OACB is a parallelogrma with vec( OC) = vec(a) and vec( AB) = vec(...

    Text Solution

    |

  10. The position vectors of the points A, B, C are 2 hati + hatj - hatk , ...

    Text Solution

    |

  11. If ABCDEF is regular hexagon, then AD+EB+FC is

    Text Solution

    |

  12. If the points with position vectors 20 hati + p hatj , 5 hati - hat...

    Text Solution

    |

  13. If the position vector of a point A is vec a + 2 vec b and vec a divi...

    Text Solution

    |

  14. If vec a ,\ vec b ,\ vec c and vec d are the position vectors of p...

    Text Solution

    |

  15. Let G be the centroid of Delta ABC , If vec(AB) = vec a , vec(AC) = v...

    Text Solution

    |

  16. If G is the intersection of diagonals of a parallelogram A B C D and O...

    Text Solution

    |

  17. The vector cos alpha cos beta hati + cos alpha sin beta hatj + sin a...

    Text Solution

    |

  18. In a regular hexagon A B C D E F ,\ A vec B=a ,\ B vec C= vec b\ a n d...

    Text Solution

    |

  19. If three points A, B and C have position vectors hati + x hatj + 3 ha...

    Text Solution

    |

  20. If the position vectors of the vertices of a triangle of a triangle ar...

    Text Solution

    |