Home
Class 12
MATHS
If the points whose position vectors are...

If the points whose position vectors are `2hati + hatj + hatk , 6hati - hatj + 2 hatk and 14 hati - 5 hatj + p hatk ` are collinear, then p =

A

2

B

4

C

6

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( p \) such that the points with position vectors \( \mathbf{a} = 2\hat{i} + \hat{j} + \hat{k} \), \( \mathbf{b} = 6\hat{i} - \hat{j} + 2\hat{k} \), and \( \mathbf{c} = 14\hat{i} - 5\hat{j} + p\hat{k} \) are collinear, we can use the property that three points are collinear if the determinant of the matrix formed by their position vectors is zero. ### Step-by-step Solution: 1. **Set Up the Determinant**: We will form a matrix using the coefficients of the position vectors: \[ \begin{vmatrix} 2 & 1 & 1 \\ 6 & -1 & 2 \\ 14 & -5 & p \end{vmatrix} = 0 \] 2. **Calculate the Determinant**: We can expand the determinant using the first row: \[ = 2 \begin{vmatrix} -1 & 2 \\ -5 & p \end{vmatrix} - 1 \begin{vmatrix} 6 & 2 \\ 14 & p \end{vmatrix} + 1 \begin{vmatrix} 6 & -1 \\ 14 & -5 \end{vmatrix} \] 3. **Calculate the 2x2 Determinants**: - For the first determinant: \[ \begin{vmatrix} -1 & 2 \\ -5 & p \end{vmatrix} = (-1)p - (2)(-5) = -p + 10 = 10 - p \] - For the second determinant: \[ \begin{vmatrix} 6 & 2 \\ 14 & p \end{vmatrix} = (6)(p) - (2)(14) = 6p - 28 \] - For the third determinant: \[ \begin{vmatrix} 6 & -1 \\ 14 & -5 \end{vmatrix} = (6)(-5) - (-1)(14) = -30 + 14 = -16 \] 4. **Substitute Back into the Determinant**: Substitute the values of the 2x2 determinants back into the determinant: \[ 2(10 - p) - (6p - 28) - 16 = 0 \] Simplifying this gives: \[ 20 - 2p - 6p + 28 - 16 = 0 \] \[ 20 + 28 - 16 = 2p + 6p \] \[ 32 = 8p \] 5. **Solve for \( p \)**: \[ p = \frac{32}{8} = 4 \] ### Final Answer: Thus, the value of \( p \) is \( \boxed{4} \).
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos
  • ALGEBRAIC INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|39 Videos

Similar Questions

Explore conceptually related problems

If the vectors a hati + 3 hatj - 2 hatk and 3 hati - 4 hatj + b hatk are collinear, then (a,b) =

If three points A, B and C have position vectors hati + x hatj + 3 hatk, 3 hati + 4 hatj + 7 hatk and y hati -2hatj - 5 hatk respectively are collinear, then (x, y) =

If the points with position vectors 20 hati + p hatj , 5 hati - hatj and 10 hati - 13 hatj are collinear, then p =

If the points with position vectors 20 hati + p hatj , 5 hati - hatj and 10 hati - 13 hatj are collinear, then p =

The vectors lambdahati + hatj + 2hatk, hati + lambdahatj +hatk, 2hati - hatj + 2hatk are coplanar, if:

Prove that the three points whose positions vectors are 3hati-hatj+2hatk, hati-hatj-3hatk and 4hati-3hatj+hatk form an isosceles tirangle.

If P, Q, R are three points with respective position vectors hati + hatj, hati -hatj and a hati + b hatj + c hatk . The points P, Q, R are collinear, if

Show that the points A,B and C having position vectors (3hati - 4hatj - 4hatk), (2hati - hatj + hatk) and (hati - 3hatj - 5hatk) respectively, from the vertices of a right-angled triangle.

Show that the points A,B and C having position vectors (3hati - 4hatj - 4hatk), (2hati - hatj + hatk) and (hati - 3hatj - 5hatk) respectively, from the vertices of a right-angled triangle.

If the four points with position vectors -2hati+hatj+hatk, hati+hatj+hatk, hatj-hatk and lamda hatj+hatk are coplanar then lamda= (A) 1 (B) 2/3 (C) -1 (D) 0

OBJECTIVE RD SHARMA ENGLISH-ALGEBRA OF VECTORS-Chapter Test
  1. In a quadrilateral ABCD, vec(AB) + vec(DC) =

    Text Solution

    |

  2. If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) +...

    Text Solution

    |

  3. If ABCD is a parallelogram, then vec(AC) - vec(BD) =

    Text Solution

    |

  4. In a Delta ABC, " if " vec(AB) = hati - 7hatj + hatk and vec(BC) = 3 ...

    Text Solution

    |

  5. If vectors vec(AB) = -3hati+ 4hatk and vec(AC) = 5hati -2hatj+4hatk ar...

    Text Solution

    |

  6. The position vectors of P and Q are respectively vec a and vec b . If ...

    Text Solution

    |

  7. If the points whose position vectors are 2hati + hatj + hatk , 6hati -...

    Text Solution

    |

  8. The ratio in which hati + 2 hatj + 3 hatk divides the join of -2hati ...

    Text Solution

    |

  9. If OACB is a parallelogrma with vec( OC) = vec(a) and vec( AB) = vec(...

    Text Solution

    |

  10. The position vectors of the points A, B, C are 2 hati + hatj - hatk , ...

    Text Solution

    |

  11. If ABCDEF is regular hexagon, then AD+EB+FC is

    Text Solution

    |

  12. If the points with position vectors 20 hati + p hatj , 5 hati - hat...

    Text Solution

    |

  13. If the position vector of a point A is vec a + 2 vec b and vec a divi...

    Text Solution

    |

  14. If vec a ,\ vec b ,\ vec c and vec d are the position vectors of p...

    Text Solution

    |

  15. Let G be the centroid of Delta ABC , If vec(AB) = vec a , vec(AC) = v...

    Text Solution

    |

  16. If G is the intersection of diagonals of a parallelogram A B C D and O...

    Text Solution

    |

  17. The vector cos alpha cos beta hati + cos alpha sin beta hatj + sin a...

    Text Solution

    |

  18. In a regular hexagon A B C D E F ,\ A vec B=a ,\ B vec C= vec b\ a n d...

    Text Solution

    |

  19. If three points A, B and C have position vectors hati + x hatj + 3 ha...

    Text Solution

    |

  20. If the position vectors of the vertices of a triangle of a triangle ar...

    Text Solution

    |