Home
Class 12
MATHS
The position vectors of the points A, B,...

The position vectors of the points A, B, C are `2 hati + hatj - hatk , 3 hati - 2 hatj + hatk and hati + 4hatj - 3 hatk ` respectively . These points

A

form an isosceles triangle

B

form a right triangle

C

are collinear

D

form a scalene triangle

Text Solution

AI Generated Solution

The correct Answer is:
To determine the relationship between the points A, B, and C given their position vectors, we will follow these steps: 1. **Identify the position vectors**: - Let the position vector of point A be \( \vec{A} = 2\hat{i} + \hat{j} - \hat{k} \) - Let the position vector of point B be \( \vec{B} = 3\hat{i} - 2\hat{j} + \hat{k} \) - Let the position vector of point C be \( \vec{C} = \hat{i} + 4\hat{j} - 3\hat{k} \) 2. **Form the vectors AB and AC**: - The vector \( \vec{AB} = \vec{B} - \vec{A} = (3\hat{i} - 2\hat{j} + \hat{k}) - (2\hat{i} + \hat{j} - \hat{k}) \) - Simplifying \( \vec{AB} \): \[ \vec{AB} = (3 - 2)\hat{i} + (-2 - 1)\hat{j} + (1 + 1)\hat{k} = \hat{i} - 3\hat{j} + 2\hat{k} \] - The vector \( \vec{AC} = \vec{C} - \vec{A} = (\hat{i} + 4\hat{j} - 3\hat{k}) - (2\hat{i} + \hat{j} - \hat{k}) \) - Simplifying \( \vec{AC} \): \[ \vec{AC} = (1 - 2)\hat{i} + (4 - 1)\hat{j} + (-3 + 1)\hat{k} = -\hat{i} + 3\hat{j} - 2\hat{k} \] 3. **Find the area of triangle ABC**: - The area of triangle ABC can be found using the cross product of vectors \( \vec{AB} \) and \( \vec{AC} \): \[ \text{Area} = \frac{1}{2} |\vec{AB} \times \vec{AC}| \] 4. **Calculate the cross product**: - The vectors are: \[ \vec{AB} = \hat{i} - 3\hat{j} + 2\hat{k}, \quad \vec{AC} = -\hat{i} + 3\hat{j} - 2\hat{k} \] - The determinant for the cross product is: \[ \vec{AB} \times \vec{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -3 & 2 \\ -1 & 3 & -2 \end{vmatrix} \] - Expanding this determinant: \[ = \hat{i} \begin{vmatrix} -3 & 2 \\ 3 & -2 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 2 \\ -1 & -2 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & -3 \\ -1 & 3 \end{vmatrix} \] - Calculating each of these determinants: \[ = \hat{i}((-3)(-2) - (2)(3)) - \hat{j}((1)(-2) - (2)(-1)) + \hat{k}((1)(3) - (-3)(-1)) \] \[ = \hat{i}(6 - 6) - \hat{j}(-2 + 2) + \hat{k}(3 - 3) \] \[ = \hat{i}(0) - \hat{j}(0) + \hat{k}(0) = \vec{0} \] 5. **Conclusion**: - Since the cross product \( \vec{AB} \times \vec{AC} = \vec{0} \), the area of triangle ABC is \( 0 \). - Therefore, points A, B, and C are collinear. **Final Answer**: The points A, B, and C are collinear.
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos
  • ALGEBRAIC INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|39 Videos

Similar Questions

Explore conceptually related problems

The position vectors of the points A,B, and C are hati+2hatj-hatk, hati+hatj+hatk , and 2hati+3hatj+2hatk respectively. If A is chosen as the origin, then the position vectors B and C are

The position vectors of the points A,B and C are hati+2hatj-hatk,hati+hatj+hatk and 2hati+3hatj+2hatk , respectively. If A is chosen as the origin, then the position vectors of B and C are

If the position vectors of the three points A,B,C are 2hati+4hatj-hatk, hati+2hatj-3hatk and 3hati+hatj+2hatk respectively, find a vector perpendicular to the plane ABC.

The position vectors of the point A, B, C and D are 3hati-2hatj -hatk, 2hati+3hatj-4hatk, -hati+hatj+2hatk and 4hati+5hatj +lamda hatk , respectively. If the points A, B, C and D lie on a plane, find the value of lamda .

The position vectors of points A,B and C are hati+hatj,hati + 5hatj -hatk and 2hati + 3hatj + 5hatk , respectively the greatest angle of triangle ABC is

If the position vectors of the vertices of a triangle of a triangle are 2 hati - hatj + hatk , hati - 3 hatj - 5 hatk and 3 hati -4 hatj - 4 hatk , then the triangle is

If three points A, B and C have position vectors hati + x hatj + 3 hatk, 3 hati + 4 hatj + 7 hatk and y hati -2hatj - 5 hatk respectively are collinear, then (x, y) =

Position vectors of four points A,B,C,D are 4hati +5hatj+hatk,-(hatj+hatk),3hati+9hatj+4hatk and 4(-hati+hatj+hatk) respectively . Prove that they are coplanar.

The position vectors of points A and B are hati - hatj + 3hatk and 3hati + 3hatj - hatk respectively. The equation of a plane is vecr cdot (5hati + 2hatj - 7hatk)= 0 The points A and B

The values of a for which the points A, B, and C with position vectors 2hati - hatj + hatk, hati - 3hatj - 5hatk, and ahati - 3hatj + hatk ,respectively, are the vertices of a right-angled triangle with C = pi/2 are

OBJECTIVE RD SHARMA ENGLISH-ALGEBRA OF VECTORS-Chapter Test
  1. In a quadrilateral ABCD, vec(AB) + vec(DC) =

    Text Solution

    |

  2. If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) +...

    Text Solution

    |

  3. If ABCD is a parallelogram, then vec(AC) - vec(BD) =

    Text Solution

    |

  4. In a Delta ABC, " if " vec(AB) = hati - 7hatj + hatk and vec(BC) = 3 ...

    Text Solution

    |

  5. If vectors vec(AB) = -3hati+ 4hatk and vec(AC) = 5hati -2hatj+4hatk ar...

    Text Solution

    |

  6. The position vectors of P and Q are respectively vec a and vec b . If ...

    Text Solution

    |

  7. If the points whose position vectors are 2hati + hatj + hatk , 6hati -...

    Text Solution

    |

  8. The ratio in which hati + 2 hatj + 3 hatk divides the join of -2hati ...

    Text Solution

    |

  9. If OACB is a parallelogrma with vec( OC) = vec(a) and vec( AB) = vec(...

    Text Solution

    |

  10. The position vectors of the points A, B, C are 2 hati + hatj - hatk , ...

    Text Solution

    |

  11. If ABCDEF is regular hexagon, then AD+EB+FC is

    Text Solution

    |

  12. If the points with position vectors 20 hati + p hatj , 5 hati - hat...

    Text Solution

    |

  13. If the position vector of a point A is vec a + 2 vec b and vec a divi...

    Text Solution

    |

  14. If vec a ,\ vec b ,\ vec c and vec d are the position vectors of p...

    Text Solution

    |

  15. Let G be the centroid of Delta ABC , If vec(AB) = vec a , vec(AC) = v...

    Text Solution

    |

  16. If G is the intersection of diagonals of a parallelogram A B C D and O...

    Text Solution

    |

  17. The vector cos alpha cos beta hati + cos alpha sin beta hatj + sin a...

    Text Solution

    |

  18. In a regular hexagon A B C D E F ,\ A vec B=a ,\ B vec C= vec b\ a n d...

    Text Solution

    |

  19. If three points A, B and C have position vectors hati + x hatj + 3 ha...

    Text Solution

    |

  20. If the position vectors of the vertices of a triangle of a triangle ar...

    Text Solution

    |