Home
Class 12
MATHS
If the points with position vectors 20...

If the points with position vectors ` 20 hati + p hatj , 5 hati - hatj and 10 hati - 13 hatj` are collinear, then p =

A

7

B

-37

C

-7

D

37

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( p \) such that the points with position vectors \( \mathbf{A} = 20 \hat{i} + p \hat{j} \), \( \mathbf{B} = 5 \hat{i} - \hat{j} \), and \( \mathbf{C} = 10 \hat{i} - 13 \hat{j} \) are collinear, we can use the concept that the area of the triangle formed by these three points must be zero. ### Step 1: Set up the area of the triangle The area \( A \) of the triangle formed by the points \( \mathbf{A} \), \( \mathbf{B} \), and \( \mathbf{C} \) can be calculated using the determinant of the matrix formed by their position vectors: \[ A = \frac{1}{2} \begin{vmatrix} 1 & 20 & p \\ 1 & 5 & -1 \\ 1 & 10 & -13 \end{vmatrix} \] ### Step 2: Calculate the determinant We need to calculate the determinant: \[ \begin{vmatrix} 1 & 20 & p \\ 1 & 5 & -1 \\ 1 & 10 & -13 \end{vmatrix} \] Expanding this determinant along the first row: \[ = 1 \cdot \begin{vmatrix} 5 & -1 \\ 10 & -13 \end{vmatrix} - 20 \cdot \begin{vmatrix} 1 & -1 \\ 1 & -13 \end{vmatrix} + p \cdot \begin{vmatrix} 1 & 5 \\ 1 & 10 \end{vmatrix} \] ### Step 3: Calculate the smaller determinants Now, we calculate the smaller 2x2 determinants: 1. \( \begin{vmatrix} 5 & -1 \\ 10 & -13 \end{vmatrix} = (5)(-13) - (-1)(10) = -65 + 10 = -55 \) 2. \( \begin{vmatrix} 1 & -1 \\ 1 & -13 \end{vmatrix} = (1)(-13) - (-1)(1) = -13 + 1 = -12 \) 3. \( \begin{vmatrix} 1 & 5 \\ 1 & 10 \end{vmatrix} = (1)(10) - (5)(1) = 10 - 5 = 5 \) ### Step 4: Substitute back into the determinant Now substituting these values back into the determinant: \[ = 1(-55) - 20(-12) + p(5) = -55 + 240 + 5p \] ### Step 5: Set the area to zero Since the points are collinear, the area must be zero: \[ -55 + 240 + 5p = 0 \] ### Step 6: Solve for \( p \) Now, we solve for \( p \): \[ 5p = -240 + 55 \] \[ 5p = -185 \] \[ p = \frac{-185}{5} = -37 \] Thus, the value of \( p \) is \( -37 \). ### Final Answer \[ p = -37 \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos
  • ALGEBRAIC INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|39 Videos

Similar Questions

Explore conceptually related problems

The points with position vectors 10hati+3hatj,12hati-5hatj and ahati+11hatj are collinear, if a is equal to

If points hati+hatj, hati -hatj and p hati +qhatj+rhatk are collinear, then

If the points whose position vectors are 2hati + hatj + hatk , 6hati - hatj + 2 hatk and 14 hati - 5 hatj + p hatk are collinear, then p =

If the vectors a hati + 3 hatj - 2 hatk and 3 hati - 4 hatj + b hatk are collinear, then (a,b) =

If P, Q, R are three points with respective position vectors hati + hatj, hati -hatj and a hati + b hatj + c hatk . The points P, Q, R are collinear, if

The points with position vectors 60hati+3hatj,40hati-8hatj, ahati-52hatj are collinear if (A) a=-40 (B) a=40 (C) a=20 (D) none of these

If three points A, B and C have position vectors hati + x hatj + 3 hatk, 3 hati + 4 hatj + 7 hatk and y hati -2hatj - 5 hatk respectively are collinear, then (x, y) =

Find the value of lambda for which the four points with position vectors 6hati-7hatj, 16hati-19hatj, lambdahatj-6hatk and 2hati-5hatj+10hatk are coplanar.

Show that the points A, B and C with position vectors -2hati+3hatj+5hatk, hati+2hatj+3hatk and 7hati-hatk respectively are collinear

Show that the points A,B and C having position vectors (3hati - 4hatj - 4hatk), (2hati - hatj + hatk) and (hati - 3hatj - 5hatk) respectively, from the vertices of a right-angled triangle.

OBJECTIVE RD SHARMA ENGLISH-ALGEBRA OF VECTORS-Chapter Test
  1. In a quadrilateral ABCD, vec(AB) + vec(DC) =

    Text Solution

    |

  2. If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) +...

    Text Solution

    |

  3. If ABCD is a parallelogram, then vec(AC) - vec(BD) =

    Text Solution

    |

  4. In a Delta ABC, " if " vec(AB) = hati - 7hatj + hatk and vec(BC) = 3 ...

    Text Solution

    |

  5. If vectors vec(AB) = -3hati+ 4hatk and vec(AC) = 5hati -2hatj+4hatk ar...

    Text Solution

    |

  6. The position vectors of P and Q are respectively vec a and vec b . If ...

    Text Solution

    |

  7. If the points whose position vectors are 2hati + hatj + hatk , 6hati -...

    Text Solution

    |

  8. The ratio in which hati + 2 hatj + 3 hatk divides the join of -2hati ...

    Text Solution

    |

  9. If OACB is a parallelogrma with vec( OC) = vec(a) and vec( AB) = vec(...

    Text Solution

    |

  10. The position vectors of the points A, B, C are 2 hati + hatj - hatk , ...

    Text Solution

    |

  11. If ABCDEF is regular hexagon, then AD+EB+FC is

    Text Solution

    |

  12. If the points with position vectors 20 hati + p hatj , 5 hati - hat...

    Text Solution

    |

  13. If the position vector of a point A is vec a + 2 vec b and vec a divi...

    Text Solution

    |

  14. If vec a ,\ vec b ,\ vec c and vec d are the position vectors of p...

    Text Solution

    |

  15. Let G be the centroid of Delta ABC , If vec(AB) = vec a , vec(AC) = v...

    Text Solution

    |

  16. If G is the intersection of diagonals of a parallelogram A B C D and O...

    Text Solution

    |

  17. The vector cos alpha cos beta hati + cos alpha sin beta hatj + sin a...

    Text Solution

    |

  18. In a regular hexagon A B C D E F ,\ A vec B=a ,\ B vec C= vec b\ a n d...

    Text Solution

    |

  19. If three points A, B and C have position vectors hati + x hatj + 3 ha...

    Text Solution

    |

  20. If the position vectors of the vertices of a triangle of a triangle ar...

    Text Solution

    |