Home
Class 12
MATHS
Let G be the centroid of Delta ABC , If...

Let G be the centroid of `Delta` ABC , If `vec(AB) = vec a , vec(AC) = vec b,` then the `vec(AG),` in terms of `vec a and vec b, ` is

A

`(2)/(3) ( vec a + vec b)`

B

`(1)/(6) ( vec a + vec b)`

C

`(1)/(3) ( vec a + vec b)`

D

`(1)/(2) ( vec a + vec b)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos
  • ALGEBRAIC INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|39 Videos

Similar Questions

Explore conceptually related problems

Let G be the centroid of triangle \ A B Cdot If vec A B= vec a ,\ vec A C= vec b , then the bisector vec A G , in terms of vec a\ a n d\ vec b is 2/3( vec a+ vec b) b. 1/6( vec a+ vec b) c. 1/3( vec a+ vec b) d. 1/2( vec a+ vec b)1

If G denotes the centroid of Delta \ A B C ,\ then write the value of vec (G A) + vec (G B)+ vec (G C)dot

If G is the centroid of a triangle A B C , prove that vec G A+ vec G B+ vec G C= vec0dot

If G is the centroid of a triangle A B C , prove that vec G A+ vec G B+ vec G C= vec0dot

Given a parallelogram ABCD . If |vec(AB)|=a, |vec(AD)| = b & |vec(AC)| = c , then vec(DB) . vec(AB) has the value

If | vec a|+| vec b|=| vec c| and vec a+ vec b= vec c , then find the angle between vec a and vec bdot

Let vec(A)D be the angle bisector of angle A" of " Delta ABC such that vec(A)D=alpha vec(A)B+beta vec(A)C, then

If G is the centroid of triangle A B C ,t h e n vec G A+ vec G B+ vec G C is equal to a. vec0 b. 3 vec G A c. 3 vec G B d. 3 vec G C

If vec r. vec a=0, vec r. vec b=1 \ and \ [[ vec r ,vec a, vec b]]=1, vec adot vec b!=0,( vec adot vec b)^2-| vec a|^2| vec b|^2=-1, then find vec r in terms of vec a \ and \ vec b .

If vec( A) + vec(B) =vec( C ) , and | vec(A)| =2 | vec( B) | and vec( B). vec( C ) = 0 , then

OBJECTIVE RD SHARMA ENGLISH-ALGEBRA OF VECTORS-Chapter Test
  1. In a quadrilateral ABCD, vec(AB) + vec(DC) =

    Text Solution

    |

  2. If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) +...

    Text Solution

    |

  3. If ABCD is a parallelogram, then vec(AC) - vec(BD) =

    Text Solution

    |

  4. In a Delta ABC, " if " vec(AB) = hati - 7hatj + hatk and vec(BC) = 3 ...

    Text Solution

    |

  5. If vectors vec(AB) = -3hati+ 4hatk and vec(AC) = 5hati -2hatj+4hatk ar...

    Text Solution

    |

  6. The position vectors of P and Q are respectively vec a and vec b . If ...

    Text Solution

    |

  7. If the points whose position vectors are 2hati + hatj + hatk , 6hati -...

    Text Solution

    |

  8. The ratio in which hati + 2 hatj + 3 hatk divides the join of -2hati ...

    Text Solution

    |

  9. If OACB is a parallelogrma with vec( OC) = vec(a) and vec( AB) = vec(...

    Text Solution

    |

  10. The position vectors of the points A, B, C are 2 hati + hatj - hatk , ...

    Text Solution

    |

  11. If ABCDEF is regular hexagon, then AD+EB+FC is

    Text Solution

    |

  12. If the points with position vectors 20 hati + p hatj , 5 hati - hat...

    Text Solution

    |

  13. If the position vector of a point A is vec a + 2 vec b and vec a divi...

    Text Solution

    |

  14. If vec a ,\ vec b ,\ vec c and vec d are the position vectors of p...

    Text Solution

    |

  15. Let G be the centroid of Delta ABC , If vec(AB) = vec a , vec(AC) = v...

    Text Solution

    |

  16. If G is the intersection of diagonals of a parallelogram A B C D and O...

    Text Solution

    |

  17. The vector cos alpha cos beta hati + cos alpha sin beta hatj + sin a...

    Text Solution

    |

  18. In a regular hexagon A B C D E F ,\ A vec B=a ,\ B vec C= vec b\ a n d...

    Text Solution

    |

  19. If three points A, B and C have position vectors hati + x hatj + 3 ha...

    Text Solution

    |

  20. If the position vectors of the vertices of a triangle of a triangle ar...

    Text Solution

    |