Home
Class 12
MATHS
The vector cos alpha cos beta hati + c...

The vector `cos alpha cos beta hati + cos alpha sin beta hatj + sin alpha hatk ` is a

A

null vector

B

unit vector

C

constant vector

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the nature of the given vector: \[ \mathbf{A} = \cos \alpha \cos \beta \, \hat{i} + \cos \alpha \sin \beta \, \hat{j} + \sin \alpha \, \hat{k} \] ### Step 1: Identify the components of the vector The vector \(\mathbf{A}\) has three components: - \(x = \cos \alpha \cos \beta\) - \(y = \cos \alpha \sin \beta\) - \(z = \sin \alpha\) ### Step 2: Calculate the magnitude of the vector The magnitude of a vector \(\mathbf{A} = x \hat{i} + y \hat{j} + z \hat{k}\) is given by the formula: \[ |\mathbf{A}| = \sqrt{x^2 + y^2 + z^2} \] Substituting the components into the formula: \[ |\mathbf{A}| = \sqrt{(\cos \alpha \cos \beta)^2 + (\cos \alpha \sin \beta)^2 + (\sin \alpha)^2} \] ### Step 3: Simplify the expression Now we simplify the expression inside the square root: \[ |\mathbf{A}| = \sqrt{\cos^2 \alpha \cos^2 \beta + \cos^2 \alpha \sin^2 \beta + \sin^2 \alpha} \] ### Step 4: Factor out common terms Notice that \(\cos^2 \alpha\) is common in the first two terms: \[ |\mathbf{A}| = \sqrt{\cos^2 \alpha (\cos^2 \beta + \sin^2 \beta) + \sin^2 \alpha} \] ### Step 5: Use the Pythagorean identity Using the identity \(\cos^2 \beta + \sin^2 \beta = 1\): \[ |\mathbf{A}| = \sqrt{\cos^2 \alpha \cdot 1 + \sin^2 \alpha} = \sqrt{\cos^2 \alpha + \sin^2 \alpha} \] ### Step 6: Apply the Pythagorean identity again Using the identity \(\cos^2 \alpha + \sin^2 \alpha = 1\): \[ |\mathbf{A}| = \sqrt{1} = 1 \] ### Conclusion Since the magnitude of the vector \(\mathbf{A}\) is 1, we can conclude that \(\mathbf{A}\) is a unit vector. Thus, the correct answer is that the vector is a **unit vector**. ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos
  • ALGEBRAIC INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|39 Videos

Similar Questions

Explore conceptually related problems

Prove that (sin alpha cos beta + cos alpha sin beta) ^(2) + (cos alpha coa beta - sin alpha sin beta) ^(2) =1.

Under rotation of axes through theta , x cosalpha + ysinalpha=P changes to Xcos beta + Y sin beta=P then . (a) cos beta = cos (alpha - theta) (b) cos alpha= cos( beta - theta) (c) sin beta = sin (alpha - theta) (d) sin alpha = sin ( beta - theta)

If the sides of a right angled triangle are {cos 2 alpha + cos 2 beta + 2 cos (alpha+beta)} and {sin 2 alpha+sin 2 beta + 2 sin (alpha+beta)} then the length of the hypotneuse is

If the eccentric angles of the extremities of a focal chord of an ellipse x^2/a^2 + y^2/b^2 = 1 are alpha and beta , then (A) e = (cos alpha + cos beta)/(cos (alpha + beta)) (B) e= (sin alpha + sin beta)/(sin(alpha + beta)) (C) cos((alpha-beta)/(2)) = e cos ((alpha + beta)/(2)) (D) tan alpha/2.tan beta/2 = (e-1)/(e+1)

Let A and B denote the statements A : cos alpha + cos beta + cos gamma =0 B : sin alpha + siin beta + sin gamma = 0 If cos(beta - gamma) + cos (gamma -alpha) + cos (alpha -beta) = - (3)/(2) , then

Let f(alpha, beta) = =|(cos (alpha + beta), -sin (alpha + beta), cos 2beta),(sin alpha, cos alpha, sin beta),(-cos alpha, sin alpha, cos beta)| if i =int_(-pi//2)^(pi//2) cos ^(2)beta(f(0,beta)+f(0,(pi)/(2)-beta))dbeta then i is

Let f(alpha, beta) =|(cos (alpha + beta), -sin (alpha + beta), cos 2beta),(sin alpha, cos alpha, sin beta),(-cos alpha, sin alpha, cos beta)| The value of l=int_(0)^(pi//2)e^(beta)(f(0,0)+f((pi)/(2),beta)+f((3pi)/(2),(pi)/(2)-beta))dbeta is

If sin^(4) alpha + 4 cos^(4) beta + 2 = 4sqrt(2) sin alpha cos beta, alpha beta in [0, pi] , then cos (alpha + beta) - cos (alpha - beta) is equal to -sqrt(k) . The value of k is _________.

Prove that 2 sin^2 beta + 4 cos(alpha + beta) sin alpha sin beta + cos 2(alpha + beta) = cos 2alpha

If sin alpha+sin beta=a and cos alpha-cos beta=b then tan((alpha-beta)/2) is equal to-

OBJECTIVE RD SHARMA ENGLISH-ALGEBRA OF VECTORS-Chapter Test
  1. In a quadrilateral ABCD, vec(AB) + vec(DC) =

    Text Solution

    |

  2. If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) +...

    Text Solution

    |

  3. If ABCD is a parallelogram, then vec(AC) - vec(BD) =

    Text Solution

    |

  4. In a Delta ABC, " if " vec(AB) = hati - 7hatj + hatk and vec(BC) = 3 ...

    Text Solution

    |

  5. If vectors vec(AB) = -3hati+ 4hatk and vec(AC) = 5hati -2hatj+4hatk ar...

    Text Solution

    |

  6. The position vectors of P and Q are respectively vec a and vec b . If ...

    Text Solution

    |

  7. If the points whose position vectors are 2hati + hatj + hatk , 6hati -...

    Text Solution

    |

  8. The ratio in which hati + 2 hatj + 3 hatk divides the join of -2hati ...

    Text Solution

    |

  9. If OACB is a parallelogrma with vec( OC) = vec(a) and vec( AB) = vec(...

    Text Solution

    |

  10. The position vectors of the points A, B, C are 2 hati + hatj - hatk , ...

    Text Solution

    |

  11. If ABCDEF is regular hexagon, then AD+EB+FC is

    Text Solution

    |

  12. If the points with position vectors 20 hati + p hatj , 5 hati - hat...

    Text Solution

    |

  13. If the position vector of a point A is vec a + 2 vec b and vec a divi...

    Text Solution

    |

  14. If vec a ,\ vec b ,\ vec c and vec d are the position vectors of p...

    Text Solution

    |

  15. Let G be the centroid of Delta ABC , If vec(AB) = vec a , vec(AC) = v...

    Text Solution

    |

  16. If G is the intersection of diagonals of a parallelogram A B C D and O...

    Text Solution

    |

  17. The vector cos alpha cos beta hati + cos alpha sin beta hatj + sin a...

    Text Solution

    |

  18. In a regular hexagon A B C D E F ,\ A vec B=a ,\ B vec C= vec b\ a n d...

    Text Solution

    |

  19. If three points A, B and C have position vectors hati + x hatj + 3 ha...

    Text Solution

    |

  20. If the position vectors of the vertices of a triangle of a triangle ar...

    Text Solution

    |