Home
Class 12
MATHS
If three points A, B and C have positio...

If three points A, B and C have position vectors `hati + x hatj + 3 hatk, 3 hati + 4 hatj + 7 hatk and y hati -2hatj - 5 hatk ` respectively are collinear, then (x, y) =

A

(2, -3)

B

(-2, 3)

C

(-2, -3)

D

(2, 3)

Text Solution

AI Generated Solution

The correct Answer is:
To determine the values of \(x\) and \(y\) such that the points \(A\), \(B\), and \(C\) are collinear, we start with their position vectors: - Point \(A\): \(\mathbf{A} = \hat{i} + x \hat{j} + 3 \hat{k}\) - Point \(B\): \(\mathbf{B} = 3 \hat{i} + 4 \hat{j} + 7 \hat{k}\) - Point \(C\): \(\mathbf{C} = y \hat{i} - 2 \hat{j} - 5 \hat{k}\) ### Step 1: Find the vectors \( \overrightarrow{AB} \) and \( \overrightarrow{AC} \) The vectors can be calculated as follows: \[ \overrightarrow{AB} = \mathbf{B} - \mathbf{A} = (3 - 1)\hat{i} + (4 - x)\hat{j} + (7 - 3)\hat{k} = 2\hat{i} + (4 - x)\hat{j} + 4\hat{k} \] \[ \overrightarrow{AC} = \mathbf{C} - \mathbf{A} = (y - 1)\hat{i} + (-2 - x)\hat{j} + (-5 - 3)\hat{k} = (y - 1)\hat{i} + (-2 - x)\hat{j} - 8\hat{k} \] ### Step 2: Set up the condition for collinearity For the points \(A\), \(B\), and \(C\) to be collinear, the vectors \(\overrightarrow{AB}\) and \(\overrightarrow{AC}\) must be scalar multiples of each other. This can be expressed using the determinant of the matrix formed by these vectors: \[ \begin{vmatrix} 2 & 4 - x & 4 \\ y - 1 & -2 - x & -8 \\ 1 & 1 & 1 \end{vmatrix} = 0 \] ### Step 3: Calculate the determinant Expanding the determinant: \[ = 2 \begin{vmatrix} -2 - x & -8 \\ 1 & 1 \end{vmatrix} - (4 - x) \begin{vmatrix} y - 1 & -8 \\ 1 & 1 \end{vmatrix} + 4 \begin{vmatrix} y - 1 & -2 - x \\ 1 & 1 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} -2 - x & -8 \\ 1 & 1 \end{vmatrix} = (-2 - x) \cdot 1 - (-8) \cdot 1 = -2 - x + 8 = 6 - x \) 2. \( \begin{vmatrix} y - 1 & -8 \\ 1 & 1 \end{vmatrix} = (y - 1) \cdot 1 - (-8) \cdot 1 = y - 1 + 8 = y + 7 \) 3. \( \begin{vmatrix} y - 1 & -2 - x \\ 1 & 1 \end{vmatrix} = (y - 1) \cdot 1 - (-2 - x) \cdot 1 = y - 1 + 2 + x = y + x + 1 \) Substituting these back into the determinant: \[ = 2(6 - x) - (4 - x)(y + 7) + 4(y + x + 1) = 0 \] ### Step 4: Expand and simplify Expanding gives: \[ = 12 - 2x - (4y + 28 - xy - 7x) + 4y + 4x + 4 = 0 \] Combining like terms: \[ = 12 + 4 - 28 + 2x + xy = 0 \implies xy + 2x - 12 = 0 \] ### Step 5: Solve for \(x\) and \(y\) Rearranging gives: \[ xy + 2x - 12 = 0 \implies y = \frac{12 - 2x}{x} \] ### Step 6: Substitute possible values for \(x\) Testing \(x = 2\): \[ y = \frac{12 - 2(2)}{2} = \frac{12 - 4}{2} = \frac{8}{2} = 4 \] Testing \(x = -2\): \[ y = \frac{12 - 2(-2)}{-2} = \frac{12 + 4}{-2} = \frac{16}{-2} = -8 \] ### Conclusion The values of \(x\) and \(y\) that satisfy the collinearity condition are: \[ (x, y) = (2, 4) \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos
  • ALGEBRAIC INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|39 Videos

Similar Questions

Explore conceptually related problems

Show that the points A,B and C having position vectors (3hati - 4hatj - 4hatk), (2hati - hatj + hatk) and (hati - 3hatj - 5hatk) respectively, from the vertices of a right-angled triangle.

Show that the points A,B and C having position vectors (3hati - 4hatj - 4hatk), (2hati - hatj + hatk) and (hati - 3hatj - 5hatk) respectively, from the vertices of a right-angled triangle.

If the points whose position vectors are 2hati + hatj + hatk , 6hati - hatj + 2 hatk and 14 hati - 5 hatj + p hatk are collinear, then p =

If the vectors a hati + 3 hatj - 2 hatk and 3 hati - 4 hatj + b hatk are collinear, then (a,b) =

The values of a for which the points A, B, and C with position vectors 2hati - hatj + hatk, hati - 3hatj - 5hatk, and ahati - 3hatj + hatk ,respectively, are the vertices of a right-angled triangle with C = pi/2 are

Show that the points A, B and C with position vectors -2hati+3hatj+5hatk, hati+2hatj+3hatk and 7hati-hatk respectively are collinear

Show that the four points A,B,C and D with position vectors 4hati+5hatj+hatk, -hatj-hatk, 3hati+9hatj+4hatk and 4(-hati+hatj+hatk) respectively, are coplanar.

The position vectors of the points A, B, C are 2 hati + hatj - hatk , 3 hati - 2 hatj + hatk and hati + 4hatj - 3 hatk respectively . These points

The position vectors of the points A, B, C are 2 hati + hatj - hatk , 3 hati - 2 hatj + hatk and hati + 4hatj - 3 hatk respectively . These points

The position vectors of the points A, B, C are 2 hati + hatj - hatk , 3 hati - 2 hatj + hatk and hati + 4hatj - 3 hatk respectively . These points

OBJECTIVE RD SHARMA ENGLISH-ALGEBRA OF VECTORS-Chapter Test
  1. In a quadrilateral ABCD, vec(AB) + vec(DC) =

    Text Solution

    |

  2. If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) +...

    Text Solution

    |

  3. If ABCD is a parallelogram, then vec(AC) - vec(BD) =

    Text Solution

    |

  4. In a Delta ABC, " if " vec(AB) = hati - 7hatj + hatk and vec(BC) = 3 ...

    Text Solution

    |

  5. If vectors vec(AB) = -3hati+ 4hatk and vec(AC) = 5hati -2hatj+4hatk ar...

    Text Solution

    |

  6. The position vectors of P and Q are respectively vec a and vec b . If ...

    Text Solution

    |

  7. If the points whose position vectors are 2hati + hatj + hatk , 6hati -...

    Text Solution

    |

  8. The ratio in which hati + 2 hatj + 3 hatk divides the join of -2hati ...

    Text Solution

    |

  9. If OACB is a parallelogrma with vec( OC) = vec(a) and vec( AB) = vec(...

    Text Solution

    |

  10. The position vectors of the points A, B, C are 2 hati + hatj - hatk , ...

    Text Solution

    |

  11. If ABCDEF is regular hexagon, then AD+EB+FC is

    Text Solution

    |

  12. If the points with position vectors 20 hati + p hatj , 5 hati - hat...

    Text Solution

    |

  13. If the position vector of a point A is vec a + 2 vec b and vec a divi...

    Text Solution

    |

  14. If vec a ,\ vec b ,\ vec c and vec d are the position vectors of p...

    Text Solution

    |

  15. Let G be the centroid of Delta ABC , If vec(AB) = vec a , vec(AC) = v...

    Text Solution

    |

  16. If G is the intersection of diagonals of a parallelogram A B C D and O...

    Text Solution

    |

  17. The vector cos alpha cos beta hati + cos alpha sin beta hatj + sin a...

    Text Solution

    |

  18. In a regular hexagon A B C D E F ,\ A vec B=a ,\ B vec C= vec b\ a n d...

    Text Solution

    |

  19. If three points A, B and C have position vectors hati + x hatj + 3 ha...

    Text Solution

    |

  20. If the position vectors of the vertices of a triangle of a triangle ar...

    Text Solution

    |