Home
Class 12
MATHS
If the position vectors of the vertices ...

If the position vectors of the vertices of a triangle of a triangle are `2 hati - hatj + hatk , hati - 3 hatj - 5 hatk and 3 hati -4 hatj - 4 hatk ,` then the triangle is

A

equilateral

B

isosceles

C

right angled but not isosceles

D

right angled

Text Solution

AI Generated Solution

The correct Answer is:
To determine the type of triangle formed by the given position vectors of its vertices, we will follow these steps: ### Step 1: Identify the position vectors Let the vertices of the triangle be: - \( A = 2\hat{i} - \hat{j} + \hat{k} \) - \( B = \hat{i} - 3\hat{j} - 5\hat{k} \) - \( C = 3\hat{i} - 4\hat{j} - 4\hat{k} \) ### Step 2: Calculate the lengths of the sides We will use the distance formula for vectors to find the lengths of sides \( AB \), \( BC \), and \( AC \). #### Length of \( AB \): \[ AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2} \] Where: - \( A(2, -1, 1) \) - \( B(1, -3, -5) \) Calculating: \[ AB = \sqrt{(1 - 2)^2 + (-3 + 1)^2 + (-5 - 1)^2} \] \[ = \sqrt{(-1)^2 + (-2)^2 + (-6)^2} \] \[ = \sqrt{1 + 4 + 36} = \sqrt{41} \] #### Length of \( BC \): Using the same formula: \[ BC = \sqrt{(3 - 1)^2 + (-4 + 3)^2 + (-4 + 5)^2} \] \[ = \sqrt{(2)^2 + (-1)^2 + (1)^2} \] \[ = \sqrt{4 + 1 + 1} = \sqrt{6} \] #### Length of \( AC \): Calculating: \[ AC = \sqrt{(3 - 2)^2 + (-4 + 1)^2 + (-4 - 1)^2} \] \[ = \sqrt{(1)^2 + (-3)^2 + (-5)^2} \] \[ = \sqrt{1 + 9 + 25} = \sqrt{35} \] ### Step 3: Check the triangle type Now we have: - \( AB = \sqrt{41} \) - \( BC = \sqrt{6} \) - \( AC = \sqrt{35} \) To determine if the triangle is a right triangle, we can check if: \[ AB^2 = AC^2 + BC^2 \] Calculating: \[ AB^2 = 41, \quad AC^2 = 35, \quad BC^2 = 6 \] \[ AC^2 + BC^2 = 35 + 6 = 41 \] Since \( AB^2 = AC^2 + BC^2 \), the triangle is a right triangle. ### Conclusion The triangle formed by the given position vectors is a right triangle. ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA OF VECTORS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|30 Videos
  • ALGEBRAIC INEQUATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|39 Videos

Similar Questions

Explore conceptually related problems

If the position vectors of the vertices of a triangle be 2hati+4hatj-hatk,4hati+5hatj+hatk and 3 hati+6hatj-3hatk , then the triangle is

Let ABC be a triangle, the position vectors of whose vertices are respectively 7 hatj + 10 hatk , -hati + 6 hat j + 6 hatk and -4 hati + 9 hatj + 6 hat k . " Then, " Delta ABC is

The position vectors of the vertices A,B and C of a triangle are hati-hatj-3hatk,2hati+hatj-2hatk and -5hati+2hatj-6hatk , respectively. The length of the bisector AD of the angleBAC , where D is on the segment BC, is

The position vectors of the points A, B, C are 2 hati + hatj - hatk , 3 hati - 2 hatj + hatk and hati + 4hatj - 3 hatk respectively . These points

The position vectors of the points A, B, C are 2 hati + hatj - hatk , 3 hati - 2 hatj + hatk and hati + 4hatj - 3 hatk respectively . These points

The position vectors of the points A, B, C are 2 hati + hatj - hatk , 3 hati - 2 hatj + hatk and hati + 4hatj - 3 hatk respectively . These points

Find the perimeter of a triangle with sides 3hati+4hatj+5hatk,4hati-3hatj-5hatk and 7 hati+hatj .

Prove that the vectgors 2hati-hatj+hatk, hati-3hatj-5hatk and 3hati-4hatj-4hatk form a righat angled triangle.

If a=3hati-2hatj+hatk,b=2hati-4hatj-3hatk and c=-hati+2hatj+2hatk , then a+b+c is

If the vectors a hati + 3 hatj - 2 hatk and 3 hati - 4 hatj + b hatk are collinear, then (a,b) =

OBJECTIVE RD SHARMA ENGLISH-ALGEBRA OF VECTORS-Chapter Test
  1. In a quadrilateral ABCD, vec(AB) + vec(DC) =

    Text Solution

    |

  2. If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) +...

    Text Solution

    |

  3. If ABCD is a parallelogram, then vec(AC) - vec(BD) =

    Text Solution

    |

  4. In a Delta ABC, " if " vec(AB) = hati - 7hatj + hatk and vec(BC) = 3 ...

    Text Solution

    |

  5. If vectors vec(AB) = -3hati+ 4hatk and vec(AC) = 5hati -2hatj+4hatk ar...

    Text Solution

    |

  6. The position vectors of P and Q are respectively vec a and vec b . If ...

    Text Solution

    |

  7. If the points whose position vectors are 2hati + hatj + hatk , 6hati -...

    Text Solution

    |

  8. The ratio in which hati + 2 hatj + 3 hatk divides the join of -2hati ...

    Text Solution

    |

  9. If OACB is a parallelogrma with vec( OC) = vec(a) and vec( AB) = vec(...

    Text Solution

    |

  10. The position vectors of the points A, B, C are 2 hati + hatj - hatk , ...

    Text Solution

    |

  11. If ABCDEF is regular hexagon, then AD+EB+FC is

    Text Solution

    |

  12. If the points with position vectors 20 hati + p hatj , 5 hati - hat...

    Text Solution

    |

  13. If the position vector of a point A is vec a + 2 vec b and vec a divi...

    Text Solution

    |

  14. If vec a ,\ vec b ,\ vec c and vec d are the position vectors of p...

    Text Solution

    |

  15. Let G be the centroid of Delta ABC , If vec(AB) = vec a , vec(AC) = v...

    Text Solution

    |

  16. If G is the intersection of diagonals of a parallelogram A B C D and O...

    Text Solution

    |

  17. The vector cos alpha cos beta hati + cos alpha sin beta hatj + sin a...

    Text Solution

    |

  18. In a regular hexagon A B C D E F ,\ A vec B=a ,\ B vec C= vec b\ a n d...

    Text Solution

    |

  19. If three points A, B and C have position vectors hati + x hatj + 3 ha...

    Text Solution

    |

  20. If the position vectors of the vertices of a triangle of a triangle ar...

    Text Solution

    |